
16 Quantum Computing and Communications

We’ve seen many ways in which physical laws set profound limits: messages can’t travel

faster than the speed of light; transistors can’t be shrunk below the size of an atom.

Conventional scaling of device performance, which has been based on increasing clock

speeds and decreasing feature sizes, is already bumping into such fundamental constraints.

But these same laws also contain opportunities. The universe offers many more ways to

communicate and manipulate information than we presently use, most notably through

quantum coherence. Specifying the state of N quantum bits, called qubits, requires 2N

coefficients. That’s a lot.

Quantum mechanics is essential to explain semiconductor band structure, but the

devices this enables perform classical functions. Perfectly good logic families can be

based on the flow of a liquid or a gas; this is called fluidic logic [Spuhler, 1983] and is

used routinely in automobile transmissions. In fact, quantum effects can cause serious

problems as VLSI devices are scaled down to finer linewidths, because small gates no

longer work the same as their larger counterparts do.

But what happens if the bits themselves are governed by quantum rather than classical

laws? Since quantum mechanics is so important, and so strange, a number of early pioneers

wondered how a quantum mechanical computer might differ from a classical one [Benioff,

1980; Feynman, 1982; Deutsch, 1985]. Feynman, for example, objected to the exponential

cost of simulating a quantum system on a classical computer, and conjectured that a

quantum computer could simulate another quantum system efficiently (i.e., with less than

exponential resources). We now know this to be true, and it turns out to be just one of the

remarkable implications of representing information quantum mechanically. A quantum

computer could find prime factors in polynomial time rather than the exponential time

required classically, thereby defeating conventional cryptosystems used for electronic

commerce and information security. Quantum mechanics also offers an entirely new way

to protect information by applying the foundations of quantum measurement rather than

number theory, and it can even be used to teleport particles instead of just communicating

bits.

To understand the engineering implementation of such science-fiction fantasies it’s

necessary to understand quantum mechanics (to the extent that’s possible). This will entail

looking more deeply at the formal structure of the theory than we have in our passing

uses of it so far, then extending it to include angular momentum and thermodynamics,

and finally building up a language to describe quantum information, protocols, circuits,

and algorithms.
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16.1 QUANTUM MECHANICS

Of the many attempts to explain the foundations of quantum mechanics, arguably the

most successful one is: because that’s the way it is. Experimental observations have

inspired and then justified the development of a theory that is remote from our everyday

experience. For this reason, intuition is dangerous in quantum mechanics. At the outset,

when in doubt, it’s best to focus on the mathematical formalism and leave questions about

meaning and interpretation to later when intuition is tempered by experience.

16.1.1 States and Operators

The state of a quantum system is completely specified by itswave function |ψ〉.Operators
associate transformations of the wave function with observable properties. If an operator

X̂ acting on a wave function |n〉 returns the wave function multiplied by a coefficient xn

X̂|n〉 = xn|n〉 (16.1)

then |n〉 is said to be an eigenvector of the operator, xn the corresponding eigenvalue,
and the index n is the quantum number of the state. The spectrum of eigenvalues can
be continuous, such as the position of a free particle, or discrete, like the energy levels

of an atom.

Quantum operators are linear, which means that

X̂
(

α|a〉 + β|b〉
)

= αX̂|a〉 + βX̂|b〉 , (16.2)

for arbitrary complex constants α and β. This is an experimental observation, although if
quantum mechanics was nonlinear then it would be possible to send messages faster than

light or solve intractable computational problems [Weinberg, 1989; Abrams & Lloyd,

1998] – remarkable but unlikely capabilities.

A complete set of eigenfunctions forms a basis that can be used to expand an arbitrary

wave function

|ψ〉 =
∑

n

an|n〉 . (16.3)

|an|2 is the probability that a measurement of X̂n will return the value xn. If this does
happen, then the wave function is said to collapse into the state |n〉 regardless of what
basis it started in. A quantum measurement necessarily disturbs the system unless it is

already in an eigenstate.

The coefficients an provide a representation of the wave function, conventionally writ-
ten as a column vector called the state vector. The space of these vectors is called aHilbert

space, which will be finite- or infinite-dimensional for discrete or continuous eigenvalues

respectively. Choosing a different set of eigenfunctions gives a different representation

for the state vector. Operators on state vectors are matrices.

In the state vector representation, quantum mechanical manipulations are just linear

algebra [Strang, 1988]. Associated with each column vector |ψ〉 is a row vector 〈ψ|

〈ψ| = |ψ〉† , (16.4)
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where the dagger operator is defined to be the complex conjugate of the transpose





a b
c d
e f





†

=

(

a∗ c∗ e∗

b∗ d∗ f∗

)

(16.5)

and is called the Hermitian adjoint. Taking the Hermitian adjoint of a product reverses

the order
(

X̂Ŷ
)†

= Ŷ †X̂† (16.6)

and so in particular
(

X̂|ψ〉
)†

= 〈ψ|X̂† . (16.7)

The adjoint of a scalar is just the complex conjugate

(

x|ψ〉
)†
= 〈ψ|x∗ . (16.8)

The inner product of two state vectors is

〈ψ|ϕ〉 = (ψ∗
1 ψ

∗
2 · · ·)×







ϕ1
ϕ2
...







= ψ∗
1ϕ1 + ψ

∗
2ϕ2 + · · · . (16.9)

Dirac named 〈ψ| a bra, |ϕ〉 a ket, and 〈ψ|ϕ〉 a . . . bracket (get it?).
Eigenfunctions are orthonormal,

〈j|k〉 = δij . (16.10)

Wave functions are therefore normalized because the sum of the probabilities of mea-

surement outcomes must equal 1:

〈ψ|ψ〉 =
∑

j

〈j|a∗jaj |j〉

=
∑

j

|aj |2

= 1 . (16.11)

The expectation value of an operator is found from

〈X̂〉 = 〈ψ|X̂|ψ〉 , (16.12)

with an adjoint
(

〈ψ|X̂|ψ〉
)†

= 〈ψ|X̂†|ψ〉 . (16.13)

Taking the expectation value of an eigenfunction

〈n|X̂|n〉 = 〈n|xn|n〉
= xn〈n|n〉
= xn , (16.14)
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and its adjoint

(

〈n|X̂ |n〉
)†

= 〈n|X̂†|n〉
= 〈n|x∗n|n〉
= x∗n〈n|n〉
= x∗n , (16.15)

shows that if the observable is real valued (xn = x∗n) then X̂
† = X̂ . An operator with

this property is said to be Hermitian. Since the real world has real-valued observables,

measurable quantities are associated with Hermitian operators.

The outer product of two state vectors is an operator

|ψ〉〈ϕ| =







ψ1
ψ2
...






× (ϕ∗

1 ϕ
∗
2 · · ·)

=







ψ1ϕ
∗
1 ψ1ϕ

∗
2 · · ·

ψ2ϕ
∗
1 ψ2ϕ

∗
2 · · ·

...
...






. (16.16)

The outer product of two eigenvectors

P̂n = |n〉〈n| (16.17)

is called a projector because of its action on a wave function

P̂n|ψ〉 = |n〉〈n|
∑

m

am|m〉

=
∑

m

am|n〉〈n|m〉

= an|n〉〈n|n〉
= an|n〉 . (16.18)

The expectation value of a projector is just the likelihood that a measurement will result

in that state

〈ψ|P̂n|ψ〉 =
∑

m

〈m|a∗m|n〉〈n|am|m〉

=
∑

m

|am|2|〈n|m〉|2

= |an|2 . (16.19)

Projectors can be used to write an operator in a spectral representation in terms of its

eigenvalues

X̂ =
∑

n

xn|n〉〈n| . (16.20)

This provides a natural way to define a function of an operator as

f (X̂) =
∑

n

f (xn)|n〉〈n| . (16.21)
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The commutator of two operators is defined to be

[Â, B̂] = ÂB̂ − B̂Â . (16.22)

If the commutator vanishes then the eigenvectors of Â and B̂ will be shared,

ÂB̂ − B̂Â = 0 ⇒ ÂB̂|ab〉 = B̂Â|ab〉
Âb|ab〉 = B̂a|ab〉
ab|ab〉 = ba|ab〉 , (16.23)

but in general this need not be the case.

Consider two operators that do not commute, [Â, B̂] = iĈ, where Ĉ is written with

a prefactor of i for convenience in the following calculation. If we define new operators
by subtracting off the expectation value δÂ ≡ Â − 〈Â〉, δB̂ ≡ B̂ − 〈B̂〉, then these
operators will satisfy the same commutation relation [δÂ, δB̂] = iĈ because the scalar

expectation values of the operators do commute. The expected value of the commutator

is then

〈δÂ δB̂〉 − 〈δB̂ δÂ〉 = i〈Ĉ〉
[

〈δÂ δB̂〉 − 〈δB̂ δÂ〉
]2

= −〈Ĉ〉2

〈δÂ δB̂〉2 + 〈δB̂ δÂ〉2

−2〈δÂ δB̂〉〈δB̂ δÂ〉 = −〈Ĉ〉2

〈δÂ δB̂〉〈δB̂ δÂ〉 = 1
2

[

〈δÂ δB̂〉2 + 〈δB̂ δÂ〉2 + 〈Ĉ〉2
]

=
1

2

[

〈δÂ δB̂ + δB̂ δÂ〉2 − 2〈δÂ δB̂〉〈δB̂ δÂ〉 + 〈Ĉ〉2
]

=
1

4

[

〈δÂ δB̂ + δB̂ δÂ〉2 + 〈Ĉ〉2
]

. (16.24)

Using the Cauchy–Schwarz inequality yet again, the expectation of a product will be

bounded by the product of the expectations

〈δÂ δB̂〉〈δB̂ δÂ〉 ≤ 〈δÂ2〉〈δB̂2〉 . (16.25)

Therefore

〈δÂ2〉〈δB̂2〉 ≥ 1

4

[

〈δÂ δB̂ + δB̂ δÂ〉2 + 〈Ĉ〉2
]

. (16.26)

If the anticommutator on the right hand side vanishes it sets a lower bound for the

inequality of

〈δÂ2〉〈δB̂2〉 ≥ 1

4
〈Ĉ〉2 (16.27)

or

〈δÂ2〉1/2〈δB̂2〉1/2 ≡ ∆A∆B ≥ 1

2
|〈Ĉ〉| . (16.28)

This is the Heisenberg uncertainty principle. The left hand side is the product of

the expected spread around the expectation value of the operators, and the right hand

side is the expectation value of the commutator. If two operators do not commute then
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determining one of them more precisely imposes less certainty on the distribution of

outcomes for the other. Because position and momentum don’t commute (equation 16.48)

∆x∆p ≥ h̄

2
. (16.29)

If we know exactly where a particle is then we have no idea how fast it is moving, or vice

versa.

The most important operator of all is the Hamiltonian, the sum of the operators for

the potential T̂ and kinetic energies V̂

Ĥ = T̂ + V̂ . (16.30)

In terms of it, Schrödinger’s equation gives the time evolution of a wave function,

ih̄
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 . (16.31)

Because Ĥ is Hermitian, the adjoint of the Hamiltonian is

−ih̄ d
dt
〈ψ(t)| = 〈ψ(t)|Ĥ†

= 〈ψ(t)|Ĥ . (16.32)

The time derivative of the expectation value of an operator that does not depend on time

can therefore be found from the chain rule,

ih̄
d

dt
〈Â〉 = ih̄ d

dt
〈ψ(t)|Â|ψ(t)〉

= ih̄〈ψ(t)|Âd|ψ(t)〉
dt

+ ih̄
d〈ψ(t)|
dt

Â|ψ(t)〉

= 〈ψ(t)|ÂĤ|ψ(t)〉 − 〈ψ(t)|ĤÂ|ψ(t)〉
= 〈ψ(t)|[Â, Ĥ]|ψ(t)〉
= 〈[Â, Ĥ]〉 . (16.33)

This is Ehrenfest’s Theorem; Problem 16.1 extends it to time-dependent operators. One

consequence is that if an operator commutes with the Hamiltonian its observable is a

constant of the motion. Another consequence follows from combining equations (16.28)

and (16.33) to find

∆Â∆Ĥ ≥ h̄

2

∣

∣

∣

∣

∣

d〈Â〉
dt

∣

∣

∣

∣

∣

. (16.34)

In terms of this derivative, a time ∆t can be defined as
∣

∣

∣

∣

∣

d〈Â〉
dt

∣

∣

∣

∣

∣

≡ ∆Â

∆t
=

〈δÂ2〉1/2
∆t

. (16.35)

∆t is the time it takes the expected value of an operator, at its instantaneous rate of
change, to differ by its standard deviation. Recognizing that ∆Ĥ ≡ ∆E is the expected

energy spread,

∆Â∆E ≥ h̄

2

∆Â

∆t
, (16.36)
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and cancelling ∆Â gives

∆E∆t ≥ h̄

2
. (16.37)

This is the energy–time uncertainty relation. It fundamentally differs from the other

uncertainty relationships because time appears in quantum mechanics as a parameter

rather than an operator. Equation (16.37) can be interpreted as putting a quantum limit

on how the energy distribution in a system bounds the rate at which an observable

property of the system can change, although there are many other ways to (mis)define

and (mis)interpret it [Aharonov & Bohm, 1961; Peres, 1993].

The evolution operator Û (t) is the one that advances a wave function in time:

|ψ(t)〉 = Û (t)|ψ(0)〉 . (16.38)

Differentiating both sides and comparing to equation (16.31) shows that Û satisfies

ih̄
d

dt
|ψ(t)〉 = ih̄ d

dt
Û (t)|ψ(0)〉

Ĥ|ψ(t)〉 = ih̄ d
dt
Û (t)|ψ(0)〉

ĤÛ (t)|ψ(0)〉 = ih̄ d
dt
Û (t)|ψ(0)〉 . (16.39)

The evolution operator therefore is a solution to

ih̄
d

dt
Û (t) = ĤÛ (t) . (16.40)

If the Hamiltonian does not explicitly depend on time this can be integrated to find that

Û (t) = e−iĤt/h̄ , (16.41)

where the exponential of an operator can be defined by equation (16.21) or a power series

expansion

e−iĤt/h̄ = 1̂− it

h̄
Ĥ +

1

2!

(

it

h̄

)2

ĤĤ + · · · (16.42)

(where 1̂ is the identity operator).

We know that wave functions always start out normalized:

〈ψ(0)|ψ(0)〉 = 1 . (16.43)

At a future time the inner product is

〈ψ(t)|ψ(t)〉 = 〈ψ(0)|Û (t)†Û (t)|ψ(0)〉 , (16.44)

which must still equal 1. Therefore

Û †Û = Î , (16.45)

where Î is the identity operator (matrix). An operator with this property is said to be
unitary, and corresponds to a rotation in Hilbert space.
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16.1.2 Angular Momentum

The non-obvious properties of quantum mechanical angular momentum are essential

to understanding quantum information. They are found by generalizing the classical

definition. The quantum position operator is simple in the position basis, just giving the

coordinates

~̂x = ~x . (16.46)

The momentum operator is less trivial in the position basis; it is equal to the spatial

gradient of the wave function

~̂p = −ih̄∇ (16.47)

(while this can be motivated, it’s simplest to take it as an experimental fact). Therefore

position and momentum do not commute:

[~̂x, ~̂p]|ψ〉 = −~xih̄∇|ψ〉 + ih̄∇~x|ψ〉
= −~xih̄∇|ψ〉 + ih̄|ψ〉 + ih̄~x∇|ψ〉
= ih̄|ψ〉

[~̂x, ~̂p] = ih̄ . (16.48)

The angular momentum operator is found from

~̂L = ~̂x× ~̂p . (16.49)

Writing out the components shows that

[L̂l, x̂m] = ih̄ǫlmnx̂n , (16.50)

[L̂l, p̂m] = ih̄ǫlmnp̂n , (16.51)

and

[L̂l, L̂m] = ih̄ǫlmnL̂n . (16.52)

The last commutator is satisfied by any quantity that behaves like an angular momentum,

including the spin degrees of freedom.

Because the components of angular momentum do not commute it is not possible for

a wave function to simultaneously be in an eigenstate of all of them. By convention, the

direction that is an angular momentum eigenstate is taken to be z. But evaluating the
components does show that the angular momentum operator commutes with the total

angular momentum L̂2 = ~̂L · ~̂L
[L̂2, ~̂L] = 0 . (16.53)

Therefore a wave function can simultaneously be an eigenfunction of the total angular

momentum and its component in one direction. If l is the quantum number for the

total angular momentum and m the quantum number for the z component, an angular
momentum eigenstate can be written as |l,m〉. For the coming calculations it will be
convenient to define these indices by

L̂2|l,m〉 = h̄2l(l + 1)|l,m〉
L̂z|l,m〉 = h̄m|l,m〉 . (16.54)
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Two useful new operators L̂+ and L̂− can be defined in terms of the orthogonal

directions

L̂± = L̂x ± iL̂y . (16.55)

From this definition its straightforward to show that

L̂†
− = L̂+ , (16.56)

L̂+L̂− = L̂
2 − L̂2z +h̄L̂z , (16.57)

[L̂z, L̂±] = ±h̄L̂± , (16.58)

and

[L̂+, L̂−] = 2h̄L̂z . (16.59)

Because of the adjoint relationship, the product of these operators must be positive

〈l,m|L̂+L̂−|l,m〉 = 〈l,m|L̂†
−L̂−|l,m〉

= |L̂−|l,m〉|2

≥ 0 . (16.60)

But we also know that

〈l,m|L̂+L̂−|l,m〉 = 〈l,m|L̂2 − L̂2z +h̄L̂z |l,m〉
= h̄2[l(l + 1)−m2 +m] 〈l,m|l,m〉
= h̄2[l(l + 1)−m2 +m] . (16.61)

Therefore

l(l + 1)−m2 +m ≥ 0 . (16.62)

And taking the operators in the opposite order gives

l(l + 1)−m2 −m ≥ 0 . (16.63)

That means that

l2 + l ≥ m2 ±m , (16.64)

which can only be satisfied if

−l ≤ m ≤ l . (16.65)

Now consider the following sequence of operators:

L̂zL̂−|l,m〉 = (L̂−L̂z −h̄L̂−)|l,m〉
= h̄(m− 1)L̂−|l,m〉 . (16.66)

L̂− gives a new eigenfunction of L̂z with m reduced by 1; for this reason it is called a

lowering operator. The normalization can be found from equation (16.61) to be

L̂−|l,m〉 = h̄
√

l(l + 1)−m(m− 1)|l,m− 1〉 . (16.67)

Likewise, L̂+ is a raising operator

L̂+|l,m〉 = h̄
√

l(l + 1)−m(m + 1)|l,m + 1〉 . (16.68)
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Since −l ≤ m ≤ l, and we’ve just found that m can be changed by integer increments

n,

−l + nm = l
nm

2
= l . (16.69)

l must be either an integer (0, 1, . . .) or a half-integer (1/2, 3/2, . . .).

A spin-1/2 particle like an electron or a proton has l = 1/2, and two possiblem states

which can be written equivalently as

|l,m〉 = |1/2, 1/2〉 = |↑〉 =
(

1

0

)

|l,m〉 = |1/2,−1/2〉 = |↓〉 =
(

0

1

)

. (16.70)

In the last basis the angular momentum operator can be written in terms of the Pauli

spin matrices

~̂L =
h̄

2
~̂σ

σ̂x =

(

0 1

1 0

)

σ̂y =

(

0 −i
i 0

)

σ̂z =

(

1 0

0 −1

)

, (16.71)

which can be verified by checking their commutation relations.

The spin magnetic moment ~µ of a particle is related to its angular momentum ~L by
the gyromagnetic ratio ~µ = γ~L (Section 10.4). The moment can thus be determined by
the operator

~̂µ = γ~̂L

= γ
h̄

2
~̂σ . (16.72)

If the spin density is n, the macroscopic spin magnetization is therefore

~M = nγ
h̄

2
〈ψ|~̂σ|ψ〉 . (16.73)

Now consider two systems labelled a and b, with angular momentum operators ~̂L(a)

and ~̂L(b). Because they satisfy the angular momentum relations individually, their sum

~̂L = ~̂L(a) + ~̂L(b) (16.74)

will also. But because

L̂2 =
[

~̂L(a) + ~̂L(b)
]2

= L̂2(a) + L̂2(b) + 2~̂L(a) · ~̂L(b)
= L̂2(a) + L̂2(b) + 2L̂z(a)L̂z(b) + L̂+(a)L̂−(b) + L̂−(a)L̂+(b) (16.75)

the eigenfunctions for systems a and b will in general not be angular momentum eigen-
functions of the combined system. For spin 1/2 there are four eigenfunctions of the
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individual systems

| ↑↑〉 , | ↑↓〉 , | ↓↑〉 , | ↓↓〉 , (16.76)

and the magnitude of the total angular momentum is from equation (16.75)

L̂2 =
3

4
+ 2L̂z(a)L̂z(b) + L̂+(a)L̂−(b) + L̂−(a)L̂+(b) . (16.77)

Substitution shows that the eigenfunctions of the combined systems are

|l = 0,m = 0〉 = 1√
2
(|↑↓〉 − |↓↑〉)

|l = 1,m = −1〉 = |↓↓〉

|l = 1,m = 0〉 = 1√
2
(|↑↓〉 + |↓↑〉)

|l = 1,m = 1〉 = |↑↑〉 . (16.78)

The l = 0 state is called a singlet, and the other three are called triplet states. These
are the symmetric and antisymmetric spin states that we used in Chapter 13 to explain

magnetism. For the more general case of adding arbitrary angular momenta it is necessary

to use Clebsch–Gordon coefficients to find the expansion of the total angular momentum

eigenfunctions in terms of the individual basis functions.

The angular momentum operator, not surprisingly, has an intimate connection with

rotations. Consider a rotation operator R̂(~θ) that returns the wave function rotated by an
angle θ around the axis of ~θ. Rotating the wave function forward is the same as rotating
its argument backwards, and in the limit of a small angle the coordinate rotation matrix

can be approximated by a cross product

R̂(δ~θ)|ψ(~x)〉 ≈ |ψ(~x− δ~θ × ~x)〉
≈ |ψ(~x)〉 − (δ~θ × ~x) · ∇|ψ(~x)〉
= |ψ(~x)〉 − δ~θ · ~x×∇|ψ(~x)〉

= |ψ(~x)〉 − δ~θ · ~x× 1

−ih̄ ~̂p|ψ(~x)〉

= |ψ(~x)〉 − i

h̄
δ~θ · ~̂L|ψ(~x)〉

R̂(δ~θ) = Î − i

h̄
δ~θ · ~̂L . (16.79)

The angular momentum operator has appeared as the generator of an infinitesimal rota-

tion. A finite rotation can be built up from the product of many inifinitesimal rotations,

so that if we write ~θ = N δ~θ and use the limit

lim
N→∞

[

1 +
x

N

]N

= ex (16.80)

we find the rotation operator to be

R̂(~θ) = e−i
~θ·~L/h̄ . (16.81)

Plugging in the Pauli spin matrices gives the rotation operators for each axis
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(Problem 16.4):

R̂x(θ) =





cos θ
2

−i sin θ
2

−i sin θ
2

cos θ
2





R̂y(θ) =





cos θ
2

− sin θ
2

sin θ
2

cos θ
2





R̂z(θ) =

(

e−iθ/2 0

0 eiθ/2

)

. (16.82)

These are going to be essential ingredients in implementing quantum logic.

16.1.3 Density Matrices

Uncertainty is central to quantum mechanics through the unpredictability of the outcome

of a measurement. It is also central to thermodynamics, in the probability distribution over

allowed states. These have very different characters, though: the former is a fundamental

limit while the latter reflects incomplete knowledge about a system with many degrees of

freedom. These can be combined by using the density matrix ρ̂.
A pure state is one for which we know the exact state |n〉; its density matrix is just

defined to be the projector

ρ̂ = |n〉〈n| . (16.83)

A mixed state is one that has a classical probability distribution over possible quantum

states. If the classical probability for a mixed state to be in the quantum state |ψi〉 is pi
then the density matrix is a weighted sum over the projection operators

ρ̂ =
∑

i

pi|ψi〉〈ψi| . (16.84)

The trace of an operator is defined by

Tr(X̂) =
∑

n

〈n|X̂|n〉 . (16.85)

It has the property of cyclic invariance

Tr(X̂Ŷ ) = Tr(Ŷ X̂) , (16.86)

and is unchanged under a change of basis. In a matrix representation of an operator the

trace is equal to the sum of the diagonal elements. Evaluating the trace of a density matrix

in the basis in which it is diagonal shows that it is normalized:

Tr(ρ̂) =
∑

n

ρnn

=
∑

n

〈n|ρ̂|n〉

=
∑

n

〈n|
∑

n′

pn′ |n′〉〈n′|n〉
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=
∑

n

pn

= 1 . (16.87)

But Tr(ρ̂2) ≤ 1, with equality holding for pure states (Problem 16.2). This provides a

way to distinguish between the density matrices for pure and mixed states.

In terms of the trace over ρ̂, the expectation value of an observable is

〈X̂〉 = Tr(ρ̂X̂)
=
∑

n

〈n|
∑

i

pi|ψi〉〈ψi|X̂|n〉

=
∑

n

〈n|
∑

i

pi
∑

n′

ain′ |n′〉〈n′|a∗in′X̂|n〉

=
∑

n

∑

i

piain〈n|a∗in′X̂|n〉

=
∑

i

pi〈ψi|X̂|ψi〉 . (16.88)

This is a classically weighted sum over the quantum expectation.

The time derivative of the density matrix

dρ̂

dt
=
∑

i

pi

[

d|ψi〉
dt

〈ψi| + |ψi〉
d〈ψi|
dt

]

=
∑

i

pi

[

1

ih̄
Ĥ|ψi〉〈ψi| + |ψi〉

1

−ih̄〈ψi|Ĥ
]

=
1

ih̄
[Ĥ, ρ̂] (16.89)

is given by its commutator with the Hamiltonian. This is the Liouville–von Neumann

evolution equation. The time dependence of the density matrix can also be found from

equation (16.41) to be the unitary transformation

ρ̂(t) =
∑

i

pi|ψi(t)〉〈ψi(t)|

=
∑

i

pie
−iĤt/h̄|ψi(0)〉〈ψi(0)|eiĤt/h̄

= e−iĤt/h̄ρ̂(0)eiĤt/h̄

= Û (t)ρ̂(t)Û †(t) . (16.90)

Unitary evolution is a serious constraint on quantum dynamics. It cannot change the

trace, eigenvalue spectrum, or entropy of a density matrix. This means that information

cannot be created or erased, just rearranged. How can this be reconciled with our everyday

experience of these things? The answer is that while the universe as a whole is believed

to be unitary, subsystems need not be.

If there are two quantum systems with state vectors |u〉 and |v〉, then a state vector in
the combined system is given by the tensor product |u〉 ⊗ |v〉, which can be abbreviated
as |u〉|v〉 or just |uv〉. Operators distribute over the tensor product

(

Û ⊗ V̂
)

(

|u〉 ⊗ |v〉
)

= Û |u〉 ⊗ V̂ |v〉 ; (16.91)



270 Quantum Computing and Communications

in a matrix representation the tensor product of two operators is

(

a b
c d

)

⊗
(

α β
γ δ

)

=









aα aβ bα bβ
aγ aδ bγ bδ
cα cβ dα dβ
cγ cδ dγ dδ









. (16.92)

Taking a partial trace over a subsystem returns the density matrix for the other part:

Trv(ρ̂uv) = Trv





∑

ij

pij |uivj〉〈uivj |





=
∑

n

〈vn|
∑

ij

pij |uivj〉〈uivj ||vn〉

=
∑

ij

pij |ui〉〈ui|

=
∑

i

pi|ui〉〈ui|

= ρ̂u . (16.93)

The expectation value of an observable in a subsystem is thus found by tracing out the

rest of the system

Tru(Û ρ̂u) = Tru
(

ÛTrv(ρ̂uv)
)

= Truv

(

(Û ⊗ Îv)ρ̂uv
)

. (16.94)

While unitary evolution cannot create or destroy information, it can move it between

subsystems. If a partial trace is taken over just a subsystem of interest, its dynamics no

longer must be unitary. One system could be a computer, and the other the rest of the

universe. When the computer appears to erase a bit it really just moves the information

to unobserved degrees of freedom, so that the combined system remains unitary.

Through this mechanism the operators, like projectors, that describe measurements

need not be unitary because information can be exchanged between the system being

measured and the measurement apparatus. Let M̂n be the measurement operator corre-

sponding to obtaining the value n, for example a projector |↑〉〈↑| onto the up-state of a
spin. The probability of this outcome is found from the magnitude

p(n) =
∣

∣

∣M̂n|ψ〉
∣

∣

∣

= 〈ψ|M̂ †
nM̂n|ψ〉 . (16.95)

If this does occur, the new state vector is found by normalizing the result of this operator

|ψ〉 n→ M̂n|ψ〉
∣

∣

∣M̂n|ψ〉
∣

∣

∣

=
M̂n|ψ〉

[

〈ψ|M̂ †
nM̂n|ψ〉

]1/2
. (16.96)
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Likewise, the density matrix becomes

ρ̂
n→ M̂nρ̂M̂

†
n

Tr
(

M̂nρ̂M̂
†
n

) . (16.97)

In thermal equilibrium the state probabilities are just given by Boltzmann factors, so

a thermalized density matrix written in terms of energy eigenstates |n〉 with eigenvalues
En is

ρ̂thermal =
∑

n

pn|n〉〈n|

=
∑

n

e−βEn

∑

m e
−βEm

|n〉〈n|

=
e−βĤ

Tr(e−βĤ)

=
e−βĤ

Z , (16.98)

where β = 1/kT and Z is the partition function. In this basis the density matrix is

diagonal. The possibility of processing information quantum mechanically rests on the

availability of all of the off-diagonal terms. These represent quantum coherence, which

eventually decoheres by interaction with the environment [Zurek, 1998]. This is the es-

sential challenge in working with quantum information: while it’s necessary to manipulate

it to do anything useful, it must carefully be isolated to protect it from decoherence. You

will break a quantum computer if you look at it too hard, which given the fragility of

quantum coherence is not very hard at all.

16.2 INFORMATION

The quantum theory of information in many ways looks like its classical counterpart,

with the classical entropy sum

H(p) = −
∑

n

pn log pn (16.99)

replaced by a trace over the density matrix

S(ρ̂) = −Tr(ρ̂ log ρ̂) . (16.100)

Using this von Neumann entropy, corresponding noiseless and noisy coding theorems

hold [Jozsa & Schumacher, 1994; Lloyd, 1997].

Don’t be lulled into a false sense of security, however: quantum information behaves

profoundly unlike its classical counterpart. A bit of quantum of information is called a

qubit. It might reside in two orthogonal polarization states of a linearly polarized photon,

or the spin-up and spin-down orientations of a proton in a magnetic field. Such qubit

eigenstates can be written as |0〉 and |1〉, where 0 and 1 index the two orthogonal basis
states. Unlike a classical bit which must be a 0 or 1, or an analog degree of freedom that
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could be between 0 and 1, a qubit can be in a superposition

|ψ〉 = α|0〉 + β|1〉 (16.101)

in which it simultaneously has |0〉 and |1〉 components.
The configuration of a two-bit classical register is specified by giving the value of the

bits (which can be 00, 01, 10, or 11); describing the state of a two-qubit register requires

22 = 4 coefficients α|00〉+β|01〉+ γ|10〉+ δ|11〉. An N -bit classical register can store N
bits, but the configuration of N qubits is specified by 2N coefficients (2N − 1 actually,
because of the normalization constraint). This ability to be in an arbitrary superposition

lets a qubit represent exponentially more information than a classical bit. It introduces a

quantum notion of parallelism because a quantum computer can operate on all possible

inputs at the same time.

A second difference between quantum information and classical information is that it

cannot be copied. Consider an “amplifier” operator Â that (if it could exist) would take
an input state and produces two identical output states

Â|ψ〉 = |ψ〉|ψ〉 . (16.102)

If we ask it to amplify a superposition we should get two copies

Â
(

α|0〉 + β|1〉
)

=
(

α|0〉 + β|1〉
) (

α|0〉 + β|1〉
)

= α2|0〉|0〉 + β2|1〉|1〉 + αβ
(

|0〉|1〉 + |1〉|0〉
)

. (16.103)

The problem is that quantum mechanical operators must be linear. This means that our

amplifier operator must also satisfy

Â
(

α|0〉 + β|1〉
)

= αÂ|0〉 + βÂ|1〉
= α|0〉|0〉 + β|1〉|1〉 , (16.104)

a contradiction with equation (16.103). The only way for these equations to agree is if

the state to be amplified is not a superposition in the basis used by the amplifier. But this

means that its value can be determined with certainty and hence a quantum amplifier

isn’t even needed to generate copies. Therefore, it is not possible to copy an arbitrary

quantum state. This no-clone theorem [Wooters & Zurek, 1982] is the foundation of

quantum cryptography. It is a consequence of the unitarity of quantum mechanics, which

is reversible and hence allows qubits to be rearranged but not created or destroyed

(although we will see that there is a loophole that permits error correction). Fortunately,

the classical study of reversible computation showed that this is indeed possible with just

a small overhead in complexity [Bennett, 1988].

The most remarkable property of all is entanglement. This lies at the heart of the ap-

parent mystery of quantum mechanics, establishing a spooky connection among quantum

systems after they interact. If a system comprises two particles, a and b, it is said to be
in a product state if the total wave function can be written as a product of the individual

particle wave functions

|ψ〉 = |a〉|b〉 . (16.105)

This is not always the case. Consider a radioactive decay process the emits two spin-1/2
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particles. If the system starts out with no net angular momentum it must end up with no

net angular momentum, and so it must be in the singlet state

|ψ〉 = 1√
2

(

|↑〉a|↓〉b − |↓〉a|↑〉b
)

. (16.106)

Because this cannot be written as a product state it is said to be entangled. Now make

a measurement of the spin orientation of particle a. Before the measurement there’s an
equal chance for it to be up or down; after the measurement it must be either up or

down. But something unexpected has happened to b after the measurement: its state is
also determined. If a turns out to be up then b is down, and vice versa. This holds
instantaneously and independent of the distance between the particles. According to the

laws of quantum mechanics b could have been sent to Mars and its state would still
have been determined by a measurement of a on Earth. This disturbing effect has been
confirmed experimentally with entangled photons emitted in a multiple-photon process

[Aspect et al., 1981; Tittel et al., 1998]

This is called the Einstein–Podolsky–Rosen paradox [Einstein et al., 1935], and be-

cause it appears to violate the locality required by relativity it is one of the reasons why

Einstein didn’t like quantum mechanics. Such entangled particles are called an EPR

pair in honor of the first people to be bothered by them. There are almost as many

interpretations as there are interpreters; among the popular ones are:

• Nothing is wrong. No one disagrees with the predictions of quantum mechanics;

the only problem is our intuition, which has no place here.

• Since the particles have a shared origin, they contain hidden variables that we
don’t know how to access but which define the outcome of the measurements.

This would be a satisfying explanation, but a series of results starting with Bell’s

Theorem appear to rule it out [Bell, 1964; Greenberger et al., 1990; Peres, 1990;

Mermin, 1993]. Problem 16.3 works through a distressingly simple example.

• After particle a’s interaction a message can travel backwards in time to the shared
origin and then forwards in time to b in the present.

• The wave function for the universe splits following a measurement into non-
interacting branches, selecting out the one with the correct answer for particle

b. This is Everett’s Many-Worlds Theory [Everett, 1957].

Amidst these and the even more bizarre explanations that have been put forward [Mermin,

1985], it is important to keep in mind that

• The predictions of quantum mechanics have been experimentally verified to fab-

ulous precision. This is a paradox about interpretation, not about what is actually

calculated and observed.

• Entanglement cannot be used to send messages faster than the speed of light, much
to the consternation of some research grantors and grantees. b knows the state of
a following the measurement, but the state of a can’t be set in advance.

Entanglement is a channel that carries purely quantum information. We will use it for

teleportation in communications, and as a kind of interconnect in Hilbert space for com-

putation.
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16.3 COMMUNICATIONS

Given the tools to describe quantum information, we now turn to explore the possibilities

afforded by quantum mechanical communications, from new ways to do old tasks (like

cryptography) to ideas that until recently were matters of science fiction rather than fact

(like teleportation).

16.3.1 Cryptography

Secure electronic transactions rely on cryptography, classical cryptography relies on num-

ber theory (Section 14.3.4), and this branch of number theory ultimately rests on very

little. While there are good reasons to believe that finding prime factors is necessarily

an exponentially difficult task, and hence for all practical purposes can be considered

intractable, there is no proof of this. That is why there is growing appreciation of the

insight that the theory of quantum measurement can be applied to protect information

by physical laws rather than number theory [Wiesner, 1983].

The most important application is to the weakest link in the cryptographic chain,

distributing private keys to establish a shared secret. The initial scheme of [Bennett &

Brassard, 1984] is shown in Figure 16.1. Alice wants to send a key to Bob, and Eve wants

to intercept it (these names are required in any discussion of cryptographic protocols).

Alice's basis

Eve's basis

Bob's basis

dropdrop dropdrop100% 100%50% 50%

Figure 16.1. Quantum key distribution with an eavesdropper, showing the probability of

Eve remaining undetected for each of the possible combinations of polarization bases.

Alice is going to communicate by sending one photon per bit to Bob, using a source

that can emit single photons [Brunel et al., 1999]. The bit will be represented by one of

two orthogonal polarization directions, and for each bit she chooses one of two sets of

orientations of the axes. Bob will likewise independently choose one of the two possible

orientations for his axes to measure the polarization state. After a string of bits is sent,

Alice and Bob can publicly report which orientations they used. Bits for which these

don’t match are discarded because the result of Bob’s measurements would be random.

Alice and Bob then publicly compare the values of some of the bits that were generated

and measured using the same axis orientation. If there is no eavesdropping then these

will match.

Now consider Eve’s influence. Since each bit is represented by a single photon, because
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of the no-clone theorem Eve cannot surreptitiously determine the value of the bit without

performing a measurement on the photon. Since she has no advance information about

the random orientation of Alice’s axes, she can do no better than randomly choose her

own orientation, and following a measurement send a new matching photon on to Bob. If

Eve is lucky enough to guess Alice’s basis then she can reliably determine the polarization

state and generate an identical photon to send to Bob. But if her axes don’t match Alice’s

then Eve will obtain a random result. She has no way of telling which is which.

If Bob and Eve both match Alice’s basis then Bob will receive the correct bit value

and not detect Eve’s presence. But if Bob’s basis matches Alice’s when Eve’s doesn’t,

half of Bob’s measurement on Eve’s bit copies will randomly match what Alice sent,

and half won’t. This means that Eve has a total probability of 3/4 of being undetected

on a single bit. That’s pretty good odds for one bit, but if Alice and Bob compare two

bits her probability of being undetected on both is (3/4)2, and for N bits (3/4)N . This

exponential growth means that Alice and Bob need compare only a short string of values

to be confident of detecting Eve’s presence.

Unlike conventional cryptographic schemes that seek to obscure information, this one

detects tampering with the message after it happens. While it suceeds only statistically

rather than with certainty, its power comes from the exponential bound put on the

probability of the eavesdropper remaining undetected. Like cryptosystems based on the

(presumed) difficulty of factoring, a linear increase in effort by the sender leads to an

exponential increase in the difficulty for the eavesdropper. Beyond resting on the firm

foundation of the impossibility of copying quantum information, one of the appeals of

quantum cryptography is the ease of understanding the scheme, although ruling out

attacks by a quantum adversary has been a much more challenging task [Lo & Chau,

1999].

From the first experimental demonstration of a quantum cryptosystem [Bennett &

Brassard, 1989], implementations have matured to include links over tens of kilome-

ters using commercial telecommunications fibers [Muller et al., 1996], and through the

atmosphere in daylight [Hughes et al., 2000].

16.3.2 Circuits

Quantum channels, like classical ones, require coding to take full advantage of their

capabilities. In Chapter 11 we saw that a nonlinear gate plus an inverter is sufficient

to generate any logical function. This can’t be true quantum mechanically because the

constraint of unitarity requires that the primitive gates be invertible so that it’s possible

to deduce their inputs from their outputs. But an analogous result does hold: any unitary

transformation can be decomposed into a combination of unitary operations on a single

qubit and a nonlinear two-qubit operator [Barenco et al., 1995].

Because a unitary transformation of a qubit preserves its norm, it can be written as a

rotation about an arbitrary axis ~θ by an angle θ, along with a possible overall phase factor

Û = eiϕR̂(~θ) . (16.107)

The rotation can in turn be decomposed into rotations about an orthogonal set of axes

by using the rotation operators in equation (16.82). This is the quantum analog of a

NOT gate, but the continuous parameterization lets it do many more things. Problem 16.5
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constructs a
√
NOT gate that serves as an inverter when applied twice; a particularly useful

single qubit gate will be the Hadamard transform

Ĥ =
1√
2

[

1 1

1 −1

]

. (16.108)

An example of a nonlinear two-input quantum gate is the CNOT (Controlled-NOT)

transformation

CNOT =









1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0









|00〉
|01〉
|10〉
|11〉

. (16.109)

If the first bit is down nothing happens to the second, and if the first bit is up the second

one is flipped. This is a quantum generalization of XOR, made reversible by retaining the

control input.

Figure 16.2 shows a simple circuit made up of a Hadamard transform followed by

a CNOT. By convention, qubits A and B enter at the left and time advances along the

wires towards the right, and the symbol for the CNOT indicates that A is the control

qubit and B is the target. Working through the circuit, the Hadamard first puts A into
a superposition. After the CNOT, if A is in the |0〉 state nothing happens to B, but if it is
a |1〉 then B will be inverted. Because A is in a superposition, B is conditionally flipped
based on the state of A. The value of B is not determined until that of A is (or vice

versa). This circuit creates an entangled pair.

ĤA

B

B

AA 0
2

10 +

BA
00

2

1100
BABA

+

Figure 16.2. Hadamard and CNOT gates in a quantum circuit.

16.3.3 Teleportation

Quantum channels can send quantum as well as classical information, with remarkable

consequences. Consider the circuit shown in Figure 16.3. It starts with Hadamard and

CNOT gates to create an EPR pair from Alice’s and Bob’s qubits. Then, Alice stays on the

Earth while Bob flys to the Moon (for example). Alice now wishes to send a new qubit
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to Bob. She can’t measure it and communicate its state classically because that would

force it into the measurement basis. But she can use a second CNOT gate to entangle the

qubit with her half of the EPR pair, which is in turn entangled with Bob’s qubit. She

does this in the opposite order of the EPR circuit, following the CNOT with a Hadamard

transform. Finally, Alice does perform a measurement to determine the state of her two

qubits.

Alice

Bob

Ĥ

Earth

Ĥ

Moon

measure

10 ba +

0

10 ba +

0

2

1100 +

2

111100

2

011000 +
+

+
ba

2

101110

2

011000 +
+

+
ba

2

001101010110

2

111011100000 -+-
+

+++
ba

2

01
11

2

10
10

2

01
01

2

10
00

babababa +
+

+
+

-
+

-
=

00

0
2

10 +

zyxI sss ˆ,ˆ,ˆ,ˆ

BobAlice

Figure 16.3. Quantum teleportation circuit.

The overall state after the second Hadamard transform can be written suggestively

as shown. Through the entanglement, the coefficients of her qubit have moved over to

Bob’s qubit. When Alice measures her qubits she learns nothing about the value of a
and b. But the outcome does force Bob’s qubit into the state tagged by the result of her
measurement. Alice can use a classical channel to communicate to Bob which of the four

possible outcomes she obtained, and then Bob can use that information to change the
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sign or swap the terms in his qubit as needed according to

|00〉 → σ̂z =

(

1 0

0 −1

)

|01〉 → iσ̂y =

(

0 1

−1 0

)

|10〉 → Î =

(

1 0

0 1

)

|11〉 → σ̂x =

(

0 1

1 0

)

. (16.110)

Once he’s finished his qubit has the coefficients of the hers. Because quantum information

can’t be copied, this really is her qubit; the one she started out with was consumed by

her measurement. At the instant it disappears its quantum information is transferred to

Bob. For obvious reasons this has come to be called teleportation [Bennett et al., 1993].

While there’s a long way to go before this is a practical way to reach your spaceship, it

has been demonstrated experimentally [Furusawa et al., 1998].

16.3.4 Error Correction

Decoherence was once widely believed to be a terminal obstacle to practical applications

of quantum information [Unruh, 1995]. After all, any attempt to measure the state of a

quantum system in order to check for errors would necessarily disturb it. It was thus a

great surprise to discover that not only could quantum errors be corrected, but it could

be done using methods from Chapter 14.

y

0

0

0

0

measure

correct

Figure 16.4. Quantum bit-flip error correction.

Figure 16.4 shows a simple scheme that protects a qubit |ψ〉 = a|0〉 + b|1〉 from bit
flips. Like classical error correction, extra bits (here called ancilla) are introduced to add

redundancy. Following the first two CNOTs, the qubit is encoded as

|ψ〉 = a|000〉 + b|111〉 . (16.111)

After the possible introduction of errors, two more ancilla are used. The sequential CNOTs

flip these if the first bit does not match the second, and if the second bit does not match
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the third. Because of the entanglement, measurement of the state of these ancilla then

forces the encoded qubits into one of these states.

Consider what happens if the first bit is flipped by an error

|ψ〉 → a|100〉 + b|011〉 . (16.112)

Following the ancilla measurement the first bit is found to disagree with the second and

third. This can unambiguously be determined to be due to an error in the first bit, which

can then be flipped back without learning anything about a or b. This is just a quantum
version of a three-bit majority code.

This alone is not sufficient because qubits, unlike classical bits, have a phase as well

as an amplitude. If there is a phase-flip error that changes the relative signs of the first

qubit,

|ψ〉 → a|000〉 − b|111〉 , (16.113)

this cannot be recognized by the code and will erroneously appear as an error in the

coefficient.

Phase-flip errors can be corrected by using Hadamards to encode the qubit in super-

positions

|ψ〉 = a
(

|0〉 + |1〉
) (

|0〉 + |1〉
) (

|0〉 + |1〉
)

+ b
(

|0〉 − |1〉
) (

|0〉 − |1〉
) (

|0〉 − |1〉
)

. (16.114)

Now if there is a relative sign error in the first qubit

|ψ〉 → a
(

|0〉 − |1〉
) (

|0〉 + |1〉
) (

|0〉 + |1〉
)

+ b
(

|0〉 + |1〉
) (

|0〉 − |1〉
) (

|0〉 − |1〉
)

(16.115)

it can be recognized and corrected once again by checking to see if the pairs of encoded

states match. But now a bit flip will cause a coefficient error

|ψ〉 → a
(

|1〉 + |0〉
) (

|0〉 + |1〉
) (

|0〉 + |1〉
)

+ b
(

|1〉 − |0〉
) (

|0〉 − |1〉
) (

|0〉 − |1〉
)

= a
(

|0〉 + |1〉
) (

|0〉 + |1〉
) (

|0〉 + |1〉
)

− b
(

|0〉 − |1〉
) (

|0〉 − |1〉
) (

|0〉 − |1〉
)

. (16.116)

Both kinds of errors can be prevented by using both schemes, encoding the state in nine

qubits as

|ψ〉 = a
(

|000〉 + |111〉
) (

|000〉 + |111〉
) (

|000〉 + |111〉
)

+ b
(

|000〉 − |111〉
) (

|000〉 − |111〉
) (

|000〉 − |111〉
)

. (16.117)

Now a bit flip

|ψ〉 → a
(

|100〉 + |011〉
) (

|000〉 + |111〉
) (

|000〉 + |111〉
)

+ b
(

|100〉 − |011〉
) (

|000〉 − |111〉
) (

|000〉 − |111〉
)

(16.118)

can be corrected within one of the encoded states, and a phase flip

|ψ〉 → a
(

|000〉 − |111〉
) (

|000〉 + |111〉
) (

|000〉 + |111〉
)

+ b
(

|000〉 + |111〉
) (

|000〉 − |111〉
) (

|000〉 − |111〉
)

(16.119)
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can be corrected between them. An arbitrary quantum error can be written in terms of

bit and phase flips, hence this scheme will repair any kind of damage to the qubit [Shor,

1995].

The possibility of quantum error correction was lurking in equation (14.33), which

showed that in a classical block code the syndrome identifies an error without providing

any information about the message. In quantum language this is called a non-demolition

measurement. Through this insight much of the classical theory of error correction has

been lifted into a quantum setting [Steane, 1996; Calderbank & Shor, 1996].

The importance of error correction extends far beyond communications. Because a

computer or a storage device can be considered to be a channel, error correction is

essential to their reliable operation. The existence of a channel capacity in these settings

has the profound implication that as long as the physical error rate is below a threshold,

arbitrarily long computations and storage times can be realized with imperfect components

[von Neumann, 1956; Winograd & Cowan, 1963]. The same thing is true quantum

mechanically in fault-tolerant quantum computing [Shor, 1996; Knill et al., 1998b].

Assume that a logical operation has a probability p of introducing an error. If instead
the same operation is performed on qubits that have been encoded in an error-correction

scheme that can fix n errors, the probability of failure after the subsequent decoding
becomes Cpn+1. The exponent is n + 1 because correction fails if there are that many
errors, and C is a factor that accounts for the overhead of the extra steps needed for the
encoding and decoding. If the error probability for a single step is below

Cpn+1 < p ⇒ p < C−1/n (16.120)

then the added work of the error correction is more than compensated for, and can be

applied iteratively to improve the performance. A clever way to do this is with a concate-

nated code. This encodes qubits, which themselves are encoded qubits, which in turn are

encoded qubits, and so forth. If one block encoding fails with a probability of Cpn+1, the
second level will fail if n + 1 blocks have an error, with a total probability ofC(Cpn+1t)n+1,
and a three-level encoding will fail with a probability of C(C(Cpn+1)n+1)n+1. As long as
the initial error is small enough, this provides a super-exponential improvement (with a

corresponding increase in the number of extra qubits).

16.4 COMPUTAT ION

The quantum circuits we’ve considered so far have been used for coding, but because

they can evaluate arbitrary functions it’s natural to wonder whether they also have logical

capabilities beyond their classical counterparts. The answer is a dramatic yes.

To understand what a computer can do, it’s necessary to know something about the

kinds of questions that can be asked of it. There are some problems that are known to be

impossible to solve, like deciding if a computer program will halt without actually having

to run it [Turing, 1936]. All of the remaining problems are theoretically soluble, but these

solutions may not be practically usable given engineering constraints such as the length of

a lifespan. While the execution time of a program will depend on the details of the machine

used to run it, an essential distinction is between problems requiring a number of steps

that is exponential versus polynomial in the problem size. For non-trivial questions the
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size of an exponential will almost always exceed the amount of one’s patience, hence these

are usually considered to be intractable. Because the Church–Turing thesis assures us

that reasonably-defined computers can execute each other’s programs with a polynomial-

time prefactor to run an emulator, the distinction between polynomial and exponential

is invariant over a broad class of architectures.

Problems such as arithmetic or sorting that can be solved in a time that is polynomial

in the problem size are said to belong to the class P. There is a larger class of problems

that have solutions that can be checked in a polynomial time, but that might require

longer than that to find an answer. This is the class NP. It seems apparent that P 6=NP
because the latter class could include many more problems, but proving this remains the

greatest open problem in computer science [Garey & Johnson, 1979].

Within the class NP there is a subset of problems that are known to be as hard as any

other one. If it’s possible to efficiently solve any one of these NP-complete problems,

then all of the other ones in NP can be solved efficiently. Cook’s Theorem is the proof

of this remarkable fact [Cook, 1971]. It applies to the satisfiability (SAT) problem of

deciding whether there is an argument that satisfies a Boolean expression; other NP-

complete problems include the traveling salesman problem of finding the shortest route

connecting a group of cities, and coloring a graph with distinct colors on the vertices.

Efficient quantum algorithms have not been found for solvingNP-complete problems,

and there are some problems for which it’s known that quantum mechanics provides no

speed-up [Farhi et al., 1998]. While the possibility of finding an NP-complete algorithm

remains an open question, there do exist good quantum algorithms for many important

problems, including searching, factoring, and quantum simulation.

16.4.1 Searching

A very general way to formulate computational problems is in terms of an oracle f (x)
that equals 1 for arguments x that solve a problem of interest. The x might be entries
in a database and f (x) a test for answers to a query, or x could be a pair of integers and
f (x) a check for prime factors.

If there are N possible values of x, and they are unsorted and nothing is known about
the inner workings of the oracle, then the only possible algorithm is to go through all

arguments exhaustively to find an answer in O(N ) steps. Think of finding a name in a
phone book given a phone number, or randomly dialing a padlock to find the combination.

Lov Grover astounded the world by showing that a quantum computer could do the

problem in
√
N steps [Grover, 1997; Grover, 1998].

Start by preparing a superposition of all possible logical states, which can be accom-

plished in a single step by applying a Hadamard transform to each of the qubits used to

represent the states (Problem 16.6)

|ψ〉 = 1√
N

N
∑

x=1

|x〉 . (16.121)

Now assume that there are M values of x for which f (x) = 1. Define |1〉 to be the
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superposition of these states

|1〉 = 1√
M

∑

f (x)=1

|x〉 (16.122)

and |0〉 to be what’s left

|0〉 = 1√
N −M

∑

f (x)=0

|x〉 , (16.123)

so that

|ψ〉 =
√

N −M

N
|0〉 +

√

M

N
|1〉 . (16.124)

If an angle θ is defined by

sin θ =

√

M

N
(16.125)

then the superposition state |ψ〉 can be rewritten in this basis as

|ψ〉 = cos θ|0〉 + sin θ|1〉 =
(

sin θ
cos θ

)

. (16.126)

Next define an operator

Û1 = Î − 2|1〉〈1|

=

[

1 0

0 1

]

− 2
[

1 0

0 0

]

=

[ −1 0

0 1

]

. (16.127)

This flips the sign of the states that satisfy the oracle. While this might seem to require

knowing the answer to the problem in advance, quantum mechanics allows the oracle to

be applied to all arguments simultaneously. The problem is that flipping the signs alone

is of no use because there are still N states to check to find the desired ones. To help

uncover them, define a second operator

Ûψ = 2|ψ〉〈ψ| − Î

= 2

[

sin θ sin θ sin θ cos θ
cos θ sin θ cos θ cos θ

]

−
[

1 0

0 1

]

=

[

2 sin2 θ − 1 2 sin θ cos θ
2 cos θ sin θ 2 cos2 θ − 1

]

(16.128)

that inverts the coefficients of an arbitrary state around their mean value. Now look what

happens when these two opeartors are applied sequentially:

ÛψÛ1 =

[

1− 2 sin2 θ 2 sin θ cos θ
−2 sin θ cos θ 2 cos2 θ − 1

]

=

[

cos 2θ sin 2θ
− sin 2θ cos 2θ

]

. (16.129)

This is just a rotation by 2θ = 2
√

M/N in the |0〉, |1〉 space. |ψ〉 started out with an
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angle of θ in that space due to the small fraction of states that satisfy the oracle. If ÛψÛ1
is applied iteratively I times, all of the probability will be in the |1〉 state after a rotation
of π/2, requiring a number of iterations

θ + I2θ =
π

2

I =
π

4

1

θ
− 1

2

=
π

4

√

N

M
− 1

2
. (16.130)

After O(
√
N ) iterations the system will be in the |x〉 state with certainty, after which a

single measurement can obtain an answer that satisfies the oracle!

If an answer could be found in logN time then this algorithm would efficiently solve

NP-complete problems, but regrettably
√
N is known to be a lower bound on the possible

speed-up [Boyer et al., 1998]. Nevertheless this can still be a very significant improve-

ment, particularly given the broad applicability of oracle problems; searching a database

of a million entries in a thousand steps is an enormous quantitative if not qualitative

advantage.

16.4.2 Transforms and Factoring

The most significant result in quantum computing, and perhaps in all of computational

complexity theory, was Peter Shor’s proof that a quantum computer could find prime

factors in polynomial time [Shor, 1997]. Factoring is one of the hardest problems that

is not an NP-complete problem. Not only was it widely believed to require exponential

time (Section 14.3.4), existing systems for secure electronic transactions rely on that

belief. Unlike most results in the study of computational complexity that rest on problem

classifications that remain open questions, here was a constructive demonstration of how

to turn a problem from intractable to tractable.

Shor’s result, and related algorithms, use aQuantum Fourier Transform (QFT). This

is defined by applying a classical Discrete Fourier Transform (DFT) to the coefficients

of a quantum state

N−1
∑

x=0

an|x〉 7→
N−1
∑

k=0

N−1
∑

n=0

ane
2πikx/N |k〉 . (16.131)

A classical DFT requires O(N 2) steps because of the double sum over N indices. A Fast

Fourier Transform (FFT) reduces this toO(N logN ) by recognizing that e2πikx/N does
not need to be evaluated for values of kx/N that are a power of 2. To turn this into an

algorithm (quantum or classical), note that because x and k are integer indices they can
be written in a binary expansion with coefficients that can be either 0 or 1

x = x0 + 2
1x1 + · · · + 2n−1xn−1

k = k0 + 2
1k1 + · · · + 2n−1kn−1 (16.132)

where N = 2n. Then discarding all of the terms in xk with an exponent of 2n or higher
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leaves the non-trivial terms

kx

2n
= kn−1

(

2−1x0
)

+ kn−2
(

2−1x1 + 2
−2x0

)

+ · · · . (16.133)

This expansion can be plugged back into the definition of the QFT to find its action on

a basis vector

|x〉 = |x0x1 · · ·xn−1〉

7→ 1√
N

N−1
∑

k=0

e2πikx/N |k〉

=
1

2n/2

1
∑

kn−1=0

1
∑

kn−2=0

e2πi[kn−1(2−1x0)+kn−2(2−1x1+2
−2x0)+···]|kn−1 · · · k1k0〉

=
1

2n/2

(

|0〉 + e2πi(2−1x0)|1〉
)(

|0〉 + e2πi(2−1x1+2
−2x0)|1〉

)

+ · · · . (16.134)

Ĥ

1x

0x
2R̂ 3R̂ 3R̂

Ĥ 2R̂ 3R̂

Ĥ 2R̂

Ĥ

2x

3x

Figure 16.5. Circuit for a quantum Fourier transform.

The product representation in equation (16.134) has a natural implementation in a

quantum circuit, shown in Figure 16.5. Input is the state |x0x1 · · ·xn−1〉. After the first
Hadamard this becomes

(

|0〉 + e2πi(2−1x0)|1〉
)

|x1 · · ·xn−1〉 (16.135)

because the sign in front of the |1〉 is a + if x0 = 0 and a − if x0 = 1 (equation 16.108).
Then comes a conditional phase shift defined by

R̂k =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e2πi/2
k











. (16.136)

This does nothing to the |0〉 state, but adds an extra phase shift to the |1〉 state based on
the value of x1, leaving

(

|0〉 + e2πi(2−1x0+2
−2x1)|1〉

)

|x1 · · ·xn−1〉 . (16.137)

After applying all of the conditional phase shifts, and then the Hadamard to the next bit,
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the state is
(

|0〉 + e2πi(2−1x0+2
−2x1+···)|1〉

) (

|0〉 + e2πi(2−1x1)|1〉
)

|x2 · · ·xn−1〉 . (16.138)

Continuing in this manner reproduces equation (16.134).

One Hadamard and n−1 phase gates are applied to |x0〉 for a total of n operations, then
there are n− 1 gates for |x1〉, and so forth, adding up to a total of n+ (n− 1)+ · · ·+1 =
n(n+1)/2 steps. This is for a single basis vector, but because of the linearity of quantum
mechanics it will also work on an arbitrary superposition, therefore the QFT reduces the

total number of steps to O
(

n2
)

= O
(

(logN )2
)

, quite a savings over the FFT. While this

is not directly applicable to classical signal-processing problems because of the difficulty

of loading in and reading out the data, it can be used as a primitive in a number of

quantum algorithms, most notably factoring.

The QFT appears in Shor’s algorithm as a way to use quantum interference for period-

finding:

• Given an integer N to factor, pick a power of two K = 2L such that N 2 < K <
2N 2.

• Choose random integer x < N .
• Initialize a pair of K-qubit registers

1√
K

K−1
∑

k=0

|0〉|0〉 . (16.139)

• Create the uniform superposition in the first register

1√
K

K−1
∑

k=0

|k〉|0〉 . (16.140)

• Perform a modular exponentiation of the first register on the second

1√
K

K−1
∑

k=0

|k〉|xk mod N〉 . (16.141)

• Make a measurement on the second register. If the result is
xk mod N = y (16.142)

then the first register will collapse into those values of x compatible with y. Because
the modular exponentiation is periodic in k with an order r [Koblitz, 1994], this
leaves the first register in the state

1√
M

M−1
∑

m=0

|l +mr〉 , (16.143)

where l is an offest that depends on y, andM is the number of values of k satisfying
equation (16.142).

• To find r, perform a QFT

1√
M

M−1
∑

m=0

1√
K

K−1
∑

n=0

e2πi(l+mr)n/K |n〉 . (16.144)
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• Measure the first register. The probability of obtaining a value n is proportional
to its coefficient

∣

∣

∣

∣

∣

M−1
∑

m=0

e2πi(l+mr)n/K

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

M−1
∑

m=0

e2πimrn/K

∣

∣

∣

∣

∣

2

. (16.145)

Since the terms in the sum will add incoherently unless rn/K is an integer, the

result is n = KC/r, where C is a random integer.

• From KC/r find the order r, from which the factors of N can be found [Ekert &

Jozsa, 1996].

A complete implementation of this algorithm requires O
(

(logN )3
)

gates, dominated

by the calculation of the modular exponentiation [Beckman et al., 1996].

16.4.3 Simulation

One of the original questions that inspired the study of quantum information was whether

a quantum computer could efficiently simulate the evolution of another quantum system

[Feynman, 1982]. If, for example, an N -spin system is being studied, modeling its state
requires a state vector with 2N elements, and operators on it are 2N × 2N matrices.

Since 240 = 1012, simulating just 40 spins would exceed the capacity of the largest digital

computers.

Not all quantum systems can be modeled efficiently on a quantum computer, but a

tremendous simplification is possible if the Hamiltonian can be written as a sum [Lloyd,

1996]

eiĤt/h̄ = ei
∑

n
Ĥnt/h̄ . (16.146)

This will be the usual case if there are short-range interactions that extend near neighbors.

We then want to find a numerical method to appoximate equation (16.146) on a quantum

computer, but unlike classical numerical methods [Gershenfeld, 1999a] this one must

recognize that the Hamiltonian terms in general won’t commute.

For two terms, the evolution over a time ∆t is to second order

ei(Â+B̂)∆t

= 1̂ + i(Â + B̂)∆t − 1

2
(Â + B̂)(Â + B̂)∆t2 +O(∆t3) (16.147)

= 1̂ + iÂ∆t− 1

2
Â2∆t2 + iB̂∆t− 1

2
B̂2∆t2 +

1

2
ÂB̂∆t2 +

1

2
B̂Â∆t2 +O(∆t3) .

An obvious guess would be to just apply each evolution separately, but this is incorrect

at second order

eiÂ∆teiB̂∆t

=

(

1̂ + iÂ∆t− 1

2
Â2∆t2 +O(∆t3)

)(

1̂ + iB̂∆t− 1

2
B̂2∆t2 +O(∆t3)

)

= 1̂ + iÂ∆t− 1

2
Â2∆t2 + iB̂∆t− 1

2
B̂2∆t2 − ÂB̂∆t2 +O(∆t3) . (16.148)
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That can be fixed by splitting the first operator as

eiÂ∆t/2eiB̂∆teiÂ∆t/2

=

(

1̂ +
i

2
Â∆t− 1

8
Â2∆t2 +O(∆t3)

)(

1̂ + iB̂∆t− 1

2
B̂2∆t2 +O(∆t3)

)

(

1̂ +
i

2
Â∆t− 1

8
Â2∆t2 +O(∆t3)

)

(16.149)

= 1̂ + iÂ∆t− 1

2
Â2∆t2 + iB̂∆t− 1

2
B̂2∆t2 − 1

2
ÂB̂∆t2 − 1

2
B̂Â∆t2 +O(∆t3) .

Asymptotically, this leads to the Trotter formula

lim
N→∞

(

eiÂt/NeiB̂t/N
)N

= ei(Â+B̂)t . (16.150)

The second-order cancellation can also be obtained by grouping the terms in theCampbell–

Baker–Hausdorf formula

ei(Â+B̂)∆t = eiÂ∆teiB̂∆te−[Â,B̂]∆t
2/2 +O(∆t3) . (16.151)

These relationships are the basis of quantum simulation. Quantum circuits are devised

that emulate the local Hamiltonian, and then these are applied iteratively to model the

global evolution. A linear number of applications corresponds to an exponential amount

of work in the Hilbert space of the quantum computer, which can be a physical system

unrelated to the one being modeled [Somaroo et al., 1999].

Although quantum simulation has received less attention than other quantum algo-

rithms because prospective users are people who already study quantum mechanics, it

offers an exponential improvement with broad applicability to many areas of technological

interest such as molecular structure and quantum effects in VLSI scaling.

16.4.4 Experimental Implementation

This is a fitting final section. Quantum computing is one of the most exciting opportunities

in all of information processing, both for its fundamental implications and practical ap-

plications. The explanation of how these devices function crosses the traditional division

between the theory of computation and physical theory, and experimental implementa-

tions draw on ideas from almost every page in this book.

Of all the candidate technologies to continue scaling beyond the VLSI era, quantum

logic has one unique feature. Moore’s Law is exponential; any classical approach demands

an exponential increases in space or time. Even the Avogadro’s number of elements in

a DNA computer is quickly limited by the size of an exponential problem [Adleman,

1994]. Quantum computing accesses Hilbert space, the one exponential resource that has

been untapped for computation. What’s so remarkable about algorithms such as Shor’s

and Grover’s is that they provide answers with certainty, rather than a probability of

success that decreases inversely with the problem size.

Early theoretical studies of quantum computing used “designer” Hamiltonians with

desired properties. The development of experimental approaches began with the recog-

nition that physically-plausible local interactions were adequate for realizing arbitrary

quantum algorithms [Lloyd, 1993]. Initial attempts to apply this insight ran afoul of the
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essential paradox in quantum logic: the system must be protected from the external en-

vironment to remain quantum, but must remain accessible to the external environment

for I/O and programming. Most physical systems fit into one of two categories, those

that are externally isolated and internally uncoupled and have quantum coherence times

that can be on the order of the age of the universe, and strongly-coupled interacting ones

with subnanosecond coherence times.

Heroic experimental efforts are beginning to develop controllable quantum nonlin-

earities. Among the candidate systems are ions in laser-addressed optical traps [Cirac

& Zoller, 1995; Wieman et al., 1999], atoms in optical cavities small enough to feel

quantum electrodynamic effects [Ye et al., 1999], dilute spins in semiconductors with

exchange interactions controlled by carriers induced by a gate voltage [Kane, 1998], and

superconducting current loops [Mooij et al., 1999].

Prospects for their practical implementation improved significantly with the develop-

ment of quantum error correction and fault-tolerant circuit design that can use imperfect

components. While quantitative estimates depend on device and algorithm details, the

required relative loss of coherence per gate for steady-state operation is in the experi-

mentally accessible range of 10−3–10−6 [Knill et al., 1998b].

A second insight that significantly simplifies the device design is to recognize that a

macroscopic ensemble of microscopic quantum computers can be used. By representing

each logical qubit in many physical qubits, intentional and unintentional external interac-

tions become weak measurements that can paradoxically obtain continuous information

about the state of the logical qubits without projecting them. Post-processing can be

added to quantum algorithms so that a classical channel can be used to obtain quantum

results from an ensemble [Gershenfeld & Chuang, 1997].

Nuclear spins in molecular liquids are screened and protected by rapid tumbling aver-

aging out inter-molecular forces, giving coherence times on the order of seconds. Their

exchange interactions through bonds provide a nonlinearity that can be controlled with

RF fields. And mature chemical synthesis techniques can be used to produce macroscopic

samples of molecules of interest. These desirable attributes led to the development of

nuclear magnetic resonance pulse sequences for computation [Cory et al., 1997; Chuang

et al., 1998a].

Two spins in a strong magnetic field will have a Hamiltonian [Ernst et al., 1994]

Ĥ = h̄ωA
σ̂A
2
+h̄ωB

σ̂B
2
+h̄ωAB

σ̂A
2

σ̂B
2

. (16.152)

ωA and ωB are the precession frequencies of the spins in the magnetic field, possibly
differing because of a chemical shift in the local field strength. The ωAB term represents
nonlinear coupled evolution due to the exchange interaction. Free precession under this

Hamiltonian corresponds to linear and nonlinear rotations, which along with rotation by

transverse RF pulses provides the operators needed for univeral quantum circuits. These

were used for the first demonstrations of non-trivial quantum algorithms [Chuang et al.,

1998b; Jones & Mosca, 1998] and error correction [Cory et al., 1998].

Because the Zeeman splitting between spin eigenstates due to dipole coupling to a

magnetic field is 10−5 smaller than kT at room temperature in fields of a few tesla, thermal
spins are in a weakly-polarized high-temperature limit. Even though their evolution is



16.5 Selected References 289

quantum, the pure states needed for algorithm initial conditions cannot be obtained from

an equilibrium distribution (equation 16.98) by using unitary RF pulses. NMR techniques

simulate non-unitary operators by adding extra degrees of freedom (spins, space, or time

[Knill et al., 1998a]), but these do not scale beyond small demonstrations because of

an exponential loss in signal strength as qubits are added due to the partition function

denominator in equation (16.98) [Schack & Caves, 1999]. Overcoming this will require

order unity spin polarization, which has been accomplished in simpler atomic systems by

optical pumping [Song et al., 1999].

Whether or not any one of these schemes can eventually be scaled to defeat number-

theoretic cryptosystems, their development is already having a significant impact on the

study of both computation and physical systems. For many years it’s been clear that

computers can and will be constructed on atomic scales, the domain of nanotechnology

[Feynman, 1992; Drexler, 1992; Merkle, 1998]. The demonstration by NMR of quantum

algorithms in nuclear spin evolution shows that not only is this possible, but that nature

is already a very powerful computer if it is interrogated in the right way, and that the

kinds of computations it can perform go far beyond what can be conceived of by our

classical intuition alone.

The interchange between the study of nature and computation increasingly operates

in both directions. Physical theory has provided improved devices to compute with,

but computation is also providing an improved language to described devices with. By

viewing natural systems in a computational framework it can be possible to understand

how to “program” them to obtain desired behavior. An example is the traditional difficulty

in NMR of exchanging the quantum coefficients between a spin of interest and a more

sensitive accessible one; it’s been shown that this can be accomplished by a pulse sequence

that implements the circuit for the SWAP operation (Problem 16.7) [Linden et al., 1999].

Another example is writing an arbitrary wave function into an atom by putting a pump

laser in a feedback loop with a computer running a machine learning algorithm [Weinacht

et al., 1999]. Such cross-fertilization could equally well be called The Information of

Physics Technology, enhancing our understanding of, and ability to shape, the world

around us by merging the descriptions of the information in a system with that of its

physical properties.
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16.6 PROBLEMS

(16.1) How is Ehrenfest’s theorem changed if the observable has an explicit time depen-

dence?

(16.2) Show that that Tr(ρ̂2) ≤ 1.
(16.3) (a) Using the Pauli matrices in the z eigenbasis of equations (16.71), find the

eigenvectors for σ̂x and σ̂y.
(b) Using the result of the previous problem, apply to the singlet state |ψ〉 =

(

|↑〉1|↓〉2 − |↓〉1|↑〉2
)

/
√
2 a projector |mx = 1/2〉1〈mx = 1/2|1 onto the m1x

= 1/2 state of the first spin. What state is the second spin left in? Repeat this
in the y direction.

(c) How are the products of eigenvalues m1xm2y and m1ym2x related?

(d) Recognizing that ~̂σ1 commutes with ~̂σ2, what does the last result imply for the
relationship between 〈ψ|σ̂1xσ̂2y|ψ〉 and 〈ψ|σ̂1yσ̂2x|ψ〉?

(e) In the z eigenbasis, work out the tensor products to evaluate 〈ψ|σ̂1xσ̂2y +
σ̂1yσ̂2x|ψ〉.

(f) Compare the results of the last two parts. What happened?

(16.4) Using the spectral representation, work out the rotation operators associated with

the Pauli spin matrices.

(16.5) Find the matrix representation of the
√
NOT gate that when applied twice gives a

NOT gate (don’t worry about getting the signs of the final state right).

(16.6) Show that applying Hadamard transformations individually to N qubits each in

the |0〉 state puts them into an equal superposition of the 2N possible logical states.
(16.7) What does this circuit do?


