
11 Semiconductor Materials and Devices

This chapter is the heart of the book. We’ve learned about how physical phenomena

can represent and communicate information, and will learn about how it can be input,

stored, and output, but here we turn to the essential electronic devices that transform it.

To understand these devices we need to understand how electrons behave in materials.

We will start by reviewing the statistical mechanics of quantum systems, and then solve

a simplified model of a particle in a periodic potential to introduce the idea of band

structure. Based on this quantization of the available electronic states we will study

junction and field-effect semiconductor devices, leading up to an introduction to digital

logic. The chapter will close by considering some of the fundamental physical limits on

making and using these devices.

11.1 QUANTUM STATISTICAL MECHANICS

When statistical mechanics was introduced in Section 3.4 we did not worry about the

role of quantum mechanics. Now we must: quantum mechanics is essential in explaining

the states available to electrons in a semiconductor. The statistics will need to account

for the allowed occupancy, and the variable number of electrons as a function of external

fields or internal doping.

Remember that statistical mechanical distributions are found by maximizing their

entropy subject to external constraints expressed by Lagrange multipliers. In equation

(3.60) we saw that fixing the average energy
∑

i

Eipi = E (11.1)

introduced the temperature β = 1/kT and gave the partition function for the canonical
distribution

Z =
∑

i

e−βEi . (11.2)

Varying the number of particles introduces another constraint,
∑

i

Nipi = N , (11.3)

where the sum is over the possible number of particles Ni in each state, and N is

the expected total number of particles in the system. Adding this to equation (3.49) and
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repeating the derivation of the maximum entropy distribution gives the partition function

for the grand canonical distribution

Z =
∑

i

e−β(Ei−µNi) , (11.4)

where the sum is now over the available states and their possible occupancies and Ei

is the total energy of a given configuration. The expected value of any quantity fi that
depends on the state of the system is then found from

〈f〉 = 1

Z
∑

i

fi e
−β(Ei−µNi) . (11.5)

The new parameter that arises from the constraint on the particle number is µ, the
chemical potential. Once again comparing the microscopic and macroscopic thermody-

namic definitions shows that the chemical potential is equal to the rate at which the free

energy F grows as particles are added to the sytem [Reif, 1965],

µ =
∂F

∂N
. (11.6)

Remember that there are two kinds of quantum systems: fermions, which have 1/2-

integer spin and which cannot be in the same state because of the Pauli exclusion prin-

ciple, and bosons, which have integer spin and can share the same state. Since electrons

are fermions, here we will need to solve equation (11.5) subject to the condition that

each state can have only one electron. When we consider photons, which are bosons, in

Chapter 12 we’ll want solutions that allow an unlimited number of particles per state.

The most important statistical quantity will be the expected occupancy of the available

quantum states as a function of their energy and the temperature. If there are Ni particles

in the ith quantum state, with a single-particle energy Ei, we’ll neglect interactions and

take the total energy to be EiNi. Then the expected number of particles in state s is
found by summing over all possible configurations,

〈Ns〉 =
∑

N1

∑

N2
· · · Nse

−β(E1N1+E2N2+···)+βµ(N1+N2+···)

∑

N1

∑

N2
· · · e−β(E1N1+E2N2+···)+βµ(N1+N2+···)

=

∑

Ns
Nse

−βEsNs+βµNs

∑

Ns
e−βEsNs+βµNs

. (11.7)

The sum overNs can be pulled out of the other sums, and except for it the numerator and

denominator cancel. Equation (11.7) can now be evaluted for the two cases of interest.

• Fermions
Here Ns must be either 0 or 1 because there can’t be more than one fermion in a

single state:

〈Ns〉 =
∑1

Ns=0
Nse

−βEsNs+βµNs

∑1
Ns=0

e−βEsNs+βµNs

=
0 + e−βEs+βµ

1 + e−βEs+βµ

=
1

eβ(Es−µ) + 1
. (11.8)
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This is called the Fermi–Dirac distribution.

• Bosons
For bosons, the sum over Ns runs from 0 to∞:

〈Ns〉 =
∑

∞

Ns=0
Nse

−βEsNs+βµNs

∑

∞

Ns=0
e−βEsNs+βµNs

=

∑

∞

Ns=0
NsC

Ns

∑

∞

Ns=0
CNs

(C ≡ e−βEs+βµ)

=
C d
dC

∑

∞

Ns=0
CNs

∑

∞

Ns=0
CNs

=
C d
dC
(1− C)−1

(1− C)−1

=
C(1 − C)−2

(1− C)−1

=
1

C−1 − 1
=

1

eβ(Es−µ) − 1 . (11.9)

This is theBose–Einstein distribution. It differs from the Fermi–Dirac distribution

only by the minus sign in the denominator, but we will see that this sign difference

makes all the difference in the world.

11.2 ELECTRONIC STRUCTURE

In an atom that is part of a crystal, there are core electrons that remain tightly bound

to the nucleus unless they are knocked out by energetic particles such as photons in

X-ray Photoemission Spectroscopy (XPS) or electrons in Auger spectroscopy. There

are also less weakly bound outer-shell electrons that can move around the crystal. A

surprisingly good approximation is to ignore the inner-shell electrons, and treat the

outer-shell electrons as a non-interacting ideal gas of fermions traveling in a medium

with a spatially periodic potential due to the atoms on the crystal lattice sites [Ashcroft &

Mermin, 1976]. From this simple and historically important model we’ll find that there

are momentum bands of allowed and forbidden electron energies which we will then use

to explain the basic features of semiconductors. This is a physicists’ approach; similar

but complementary insights come from viewing band structure as resulting from the

electronic states available in a system with many bonds [Hoffmann, 1988].

Here we’ll introduce just enough quantum mechanics to analyze a one-dimensional

model of an electron in a periodic potential, saving the general structure of quantum

mechanics for Chapter 16. The spatial state of the electron will be described by its wave

function ψ(x), with the probability of seeing the electron at a point given by |ψ(x)|2.
Since the electron must be somewhere the wave function is normalized,

∫

∞

−∞

|ψ(x)|2 dx = 1 . (11.10)
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Measurable quantities are given by differential operators that act on the wave function;

the most important one being the total energy, called the Hamiltonian

H[ψ(x)] =
[

− h̄2

2m

d2

dx2
+ V (x)

]

ψ(x) , (11.11)

where V (x) is the electron’s potential energy, and (−h̄2/2m) d2/dx2 is the operator
corresponding to the kinetic energy. The expected value of the energy associated with

the wave function is

〈ψ|H|ψ〉 =
∫

∞

−∞

ψ∗(x)H[ψ(x)] dx . (11.12)

The evolution of a wave function is given by the time-dependent Schrödinger equation

H[ψ(x)] = ih̄∂ψ
∂t

. (11.13)

If the Hamiltonian does not depend on time, the allowable energy states are given by

wave functions that satisfy the time-independent Schrödinger equation

H[ψE(x)] = EψE(x) , (11.14)

where the ψE(x) are the eigenfunctions of the Hamiltonian, and the possible values of E
are the corresponding eigenvalues. If the potential vanishes, this is easily solved to find

for free space

− h̄2

2m

d2ψE(x)

dx2
= Eψe(x) ⇒ ψ(x) = Aeikx + Be−ikx , (11.15)

where A and B are constants that depend on the boundary conditions, and the energy

E and wave vector k are related by E = h̄2k2/2m.

In Chapter 16 we’ll see that if another operator O commutes with the Hamiltonian so
that

H{O[ψ(x)]} = O{H[ψ(x)]} , (11.16)

then wave functions can be chosen to simultaneously be eigenfunctions of both operators.

In particular, if the potential is periodic so that V (x + ∆) = V (∆), the Hamiltonian will
be unchanged by an operator T∆[ψ(x)] = ψ(x + ∆) that translates the wavefunction by
this distance, so T∆ commutes withH. This means that an energy eigenfunction will also
be an eigenfunction of the translation operator, with an eigenvalue λ that can depend on
the energy

T∆[ψ(x)] = λ∆(E)ψ(x) . (11.17)

If we compose two translations by two multiples of the period of the potential,

T∆′{T∆[ψ(x)]} = λ∆′λ∆ψ(x) , (11.18)

but by definition the translations add so that

T∆′{T∆[ψ(x)]} = λ∆′+∆ψ(x) . (11.19)

These equations will be consistent if λ∆(E) = e
α(E)∆, where α is a constant that depends
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on E. A further constraint comes from requiring that after translation the wave function
remain normalized

∫

∞

−∞

|T∆[ψ(x)]|2 dx =
∫

∞

−∞

∣

∣

∣eα∆ψ(x)
∣

∣

∣

2

dx ⇒ |eα∆|2 = 1 . (11.20)

This means that the exponent is imaginary, so the translation operator is a multiplication

by a phase factor that depends on the energy T∆ = e
ik(E)∆, or

ψE(x + ∆) = e
ik(E)∆ψE(x) . (11.21)

If we write the wave function as a product of two terms ψ(x) = Ak(x)uk(x), where
uk(x + ∆) = uk(x) reflects the periodicity of the potential, then

ψ(x + ∆) = Ak(x + ∆)uk(x + ∆)

= Ak(x + ∆)uk(x)

= T∆[ψk(x)]

= eik∆Ak(x)uk(x) , (11.22)

which will hold if Ak(x) = e
ikx, therefore

ψ(x) = eikxuk(x) . (11.23)

This is Bloch’s Theorem.

The simplest periodic potential ignores the size of the atoms and models them as a

sum of delta functions,

V (x) =
∞
∑

n=−∞

V0 δ(x− n∆) , (11.24)

called theKronig–Penney model. The atoms will be assumed to be fixed; in a real crystal

there are quantized displacement waves called phonons [Ashcroft & Mermin, 1976]. In

the intervals between these idealized atoms the potential vanishes, therefore the wave

function there is just that of a free plane wave

ψ(x) = Aeiqx + Be−iqx

⇒ uk(x) = Ae
i(q−k)x + Be−i(q+k)x , (11.25)

where qh̄ =
√
2mE, and A and B are unknown constants.

We will now find how q and hence E are related to the k that was introduced by
Bloch’s Theorem. Requiring that uk(0) = uk(∆) gives

A + B = Aei(q−k)∆ + Be−i(q+k)∆ . (11.26)

A second relationship comes from Schrödinger’s equation
[

− h̄2

2m

d2

dx2
+ V

]

ψ = Eψ

[

E +
h̄2

2m

d2

dx2

]

ψ(x) =
∞
∑

n=−∞

V0δ(x− n∆)ψ(x) . (11.27)

The wave function must be continuous across the delta functions, but its slope can change
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at them. Integrating from x = −ǫ to ǫ, taking the limit ǫ→ 0, and using the periodicity

of u shows that (Problem 11.1)

h̄2

2m
iq

(

A− B −Aei(q−k)∆ +Be−i(q+k)∆
)

= V0(A +B) . (11.28)

Now we have two equations in the two unknowns A and B. Eliminating B gives
[

cos(k∆)− cos(q∆)− mV0

qh̄2
sin(q∆)

]

A = 0

⇒ cos(k∆) = cos(q∆) +
mV0∆

h̄2
sin(q∆)

q∆
. (11.29)

In the limit of infinite lattice spacing ∆ → ∞ this reduces to k = q ⇒ E = h̄2k2/2m,
the free electron case. For non-infinite spacing the relationship is more complicated:

since | cos(k∆)| ≤ 1, there will be bands of q values for which there is no k that solves
this equation, and hence gaps in the allowable energy E = h̄2q2/2m. The relationship
between k and E(q) is plotted in Figure 11.1, with successive bands shifted back to the
origin by multiples of 2π/∆ (which can be done without changing the value of cos(k∆)).
Each of the regions shifted back is called a Brillouin zone. The symmetries of a real

crystal lead to a much more complicated three-dimensional band structure, but the basic

features are similar. For a free particle the bands are just sections of a parabola, which

are bent by the crystal periodicity near the gaps at the zone boundaries. k is called the
crystal momentum. It indexes the eigenstates, playing a role that is analogous but no

longer equal to the real momentum.

-p/D p/D

k

E

gap

Figure 11.1. Band structure for the Kronig–Penney model.

Next, assume that the crystal has a finite length of L = N∆, and to avoid end effects
assume periodic boundary conditions ψ(0) = ψ(L). This implies that

uk(0) = e
ikLuk(L) ⇒ eikL = 1 (11.30)
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because of the periodicity of uk. This will hold if

kL = 2πn ⇒ k =
2π

L
n =

2π

N∆
n (11.31)

for integers n. Since these crystal momentum states are separated by a difference of

2π/(N∆) and each band is 2π/∆ wide, there are

2π

∆

N∆

2π
= N (11.32)

states per band. Because electrons are spin-1/2 fermions, each of these momentum states

can hold two electrons, one “up” and one “down”, and the occupation probability as a

function of temperature is given by the Fermi–Dirac distribution

f (E) =
1

1 + e(E−µ)/kT
. (11.33)

T T2 1>

E

f E( )

1

T = 0

T1 > 0

EF

Figure 11.2. The Fermi–Dirac distribution.

The Fermi–Dirac distribution is shown in Figure 11.2. The chemical potential µ is
the change in the free energy when one electron is added. The Fermi energy or Fermi

level EF is the chemical potential at T = 0 K, and if it lies in a band it gives the highest
filled state at T = 0 K. The Fermi level will be a function of the number of electrons in
the crystal and hence the number of states that can be filled. As the temperature is raised,

electrons in states below the Fermi energy will be excited above it, which will move the

chemical potential relative to the Fermi energy. Because this difference is small at room

temperature, we will follow the common (but not quite correct) practice of using them

interchangeably.

An applied voltage can move an electron only if there is an electron to be moved, and

a state for it to go into. Therefore, for conduction the states far below the Fermi energy

don’t matter because there are no available nearby states for an electron to move into,

and states far above the Fermi energy don’t matter because there is little probability of

them being occupied. The uppermost filled band is called the valence band, and the

lowest unfilled band is called the conduction band. In an insulator, the valence band is

completely full, hence it is not possible for electrons to move unless they are excited

over the band gap. The chemical potential for an insulator lies in the middle of the gap
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because each carrier excited out of the valence band appears in the conduction band. In

a metal the chemical potential lies within the conduction band and so there are plenty of

conduction states available (Figure 11.3). The energy difference between a conduction

electron and a free electron removed from the metal is called the work function.

insulator conductor

EF

EF

valence band

conduction band

Figure 11.3. Band structure for an insulator and conductor.

A semiconductor is just an insulator that has an energy gap small enough for there

to be an appreciable probability for an electron to be thermally excited across it at room

temperature. For example, Ge, Si, and diamond all have full valence bands, but the

gap energy of Ge is 0.67 eV, for Si it is 1.11 eV, and for diamond it is 5 eV (kT at

room temperature is 0.026 eV). The room temperature resistivity of a good insulator is

∼ 1010 Ω · cm, that of a good metal is ∼ 10−6, and for a semiconductor it is ∼ 106.
When a full valence band has a single electron removed it leaves behind one available

state. This single state can be viewed as a positively charged particle called a hole that

moves under an applied field. Actually, all of the electrons in the band are moving in the

opposite direction, much like the motion of a bubble trapped in a glass of water. The

effective mass m∗ of a hole is given by finding the change in its momentum under an

applied force, and is equal to m∗

p = 0.56m0 for Si (where m0 is the free electron mass).

Electrons in a crystal also have an effective mass different from that of a free electron

because of the curvature of the bands; in Si m∗

n = 1.1m0.

The conduction properties of a material depend sensitively on the location of the

Fermi energy relative to the nearest energy gap. Adding doping atoms can add or remove

electrons, moving the Fermi energy and changing the character of the material. Such

extrinsic materials are produced by adding donor atoms, such as P or As which have one

extra outer electron compared to Si, or acceptor atoms such as Al which has one less

electron. A donor will raise the Fermi level by giving electrons up to the conduction band,

and an acceptor will lower the Fermi level by trapping valence band electrons, thereby

producing holes. This ability to selectively move the Fermi level relative to the undoped

level in the intrinsic material is the key to making semiconductor devices. Materials

which are doped so that the dominant conduction is by electrons are called n-type (n for

negative), and those doped by holes p-type (Figure 11.4).

The density of carriers n of the conduction band is found by integrating up from the
conduction band edge Ec the product of the density of states N (E), which gives the
number of available states per volume in an energy range, times the Fermi distribution

f (E), which is their thermodynamic occupancy

n =

∫

∞

Ec

f (E)N (E) dE . (11.34)
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p-typen-typeintrinsic

EF

EF
EF

donor

acceptor

Figure 11.4. Doping of a semiconductor.

Since at room temperature kT is much smaller than gap energies, a good approximation
for the Fermi distribution is

f (E) =
1

1 + e(E−EF)/kT
≃ e−(E−EF)/kT . (11.35)

The density of states can be approximated with the free-electron distribution. In 3D,

equation (11.31) becomes

~k =
2π

L

(

nxx̂ + nyŷ + nz ẑ
)

, (11.36)

hence

E =
h̄2

2m∗

n

|k|2

=
h̄2

2m∗

n

(

2π

L

)2
(

n2x + n
2
y + n

2
z

)

≡ h̄2

2m∗

n

(

2π

L

)2

r2

=
h2

2m∗

nV
2/3
r2 (11.37)

or

dE =
h2

m∗

nV
2/3

r dr . (11.38)

m∗

n is the electron’s effective mass, V = L3 is the volume of the crystal, and we’re
assuming that because there are so many electron states, the sum of the squares of the

integers n2x + n
2
y + n

2
z can be taken to be a continuous variable r

2. The density of states

N (E) can equivalently be taken to be a function of this variable N (r). In r-space, states
occupy cubes of unit volume, therefore the total number of states in the crystal V N (r) dr
in an infinitesimal shell around r is given by the area of the shell times its thickness

V N (r) dr = 2 · 4πr2 dr , (11.39)

with the factor of 2 coming from spin-up and -down occupancy. Substituting in equations

(11.37) and (11.38),

V N (r) dr = 8πr2 dr

= 8πr · r dr
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V N (E) dE = 8π
V 1/3

√

2m∗

nE

h

V 2/3m∗

n

h2
dE

N (E) dE = 8π
m∗

n
3/2

√
2E

h3
dE

=
1

2π2

(

2m∗

n

h̄2

)3/2√
E dE . (11.40)

Then

n =

∫

∞

Ec

f (E)N (E) dE

=

∫

∞

Ec

e−(E−EF)/kT
1

2π2

(

2m∗

n

h̄2

)3/2√
E dE

=
1

2π2

(

2m∗

n

h̄2

)3/2

eEF/kT

∫

∞

Ec

e−E/kT
√
E dE . (11.41)

In doing this integration we’re free to choose any energy scale we wish, and so can

simplify it by taking Ec = 0

n =
1

2π2

(

2m∗

n

h̄2

)3/2

eEF/kT

∫

∞

0

e−E/kT
√
E dE

=
1

2π2

(

2m∗

n

h̄2

)3/2

eEF/kT

√
π

2
(kT )3/2

= 2

(

m∗

nkT

2πh̄2

)3/2

eEF/kT . (11.42)

Going back to units in which Ec 6= 0 requires subtracting the difference off from EF,

n = 2

(

m∗

nkT

2πh̄2

)3/2

e−(Ec−EF)/kT

≡ Nne
−(Ec−EF)/kT . (11.43)

Similarly, the hole occupancy in the valence band is given by 1− f (E); integrating this
from the valence band edge Ev gives the symmetrical relationship

p = 2

(

m∗

pkT

2πh̄2

)3/2

e−(EF−Ev)/kT

≡ Npe
−(EF−Ev)/kT . (11.44)

For an intrinsic semiconductor the Fermi level will be in the middle of the gap, and

the hole and electron concentrations will be equal n = p = ni. The Fermi energy will
move depending on the doping, but the product of the occupancies will be a constant

that depends only on the gap energy Eg:

np = NnNpe
−(Ec−Ev)/kT = NnNpe

−Eg/kT = n2i . (11.45)

The carrier densities can be rewritten in terms of the intrinsic density ni and the intrinsic
Fermi energy Ei as

n = nie
(EF−Ei)/kT p = nie

(Ei−EF)/kT . (11.46)
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If there is no doping then these will be equal.

Now consider what happens to one of these electrons in response to the force of an

external electric field

F =
dp

dt
= qE . (11.47)

In free space this causes a steady increase in the velocity

dp = m dv = qE dt , (11.48)

but in a material the collisions with the lattice and defects will slow it down. Kinetic

theory [Balian, 1991] makes the rough approximation that after a characteristic time τ a
collision occurs which randomizes the electron’s velocity, so that the average drift velocity

is the expected value of the non-random contribution

〈v〉 = qτ

m
E ≡ µE . (11.49)

µ is the mobility. In terms of it, the conductivity is

J = nq〈v〉 = σE ⇒ σ = nqµ . (11.50)

This relates Ohm’s Law to microscopic material properties. The linear relationship be-

tween drift velocity and applied field holds only at sufficiently low fields, limited ulti-

mately by the dielectric breakdown voltage of the material (which ≈ 5×105 V/cm for

Si).

For undoped Si at room temperature, the electrons have a mobility of about 1350

cm2/(V · s), and for GaAs it is 8500 cm2/(V · s), which is why GaAs is used for high-
speed devices. Note that this is still much slower than the propagation velocities that

we found for electromagnetic waves. If Si is doped at 1017/cm3 the mobility falls to
800 cm2/(V · s) because of the extra scattering from the dopant atoms, and at 1019/cm3
it is only 90. In a High-Electron-Mobility Transistor (HEMT) the doping material

is confined to layers separated from where conduction takes place [Pavlidis, 1999]. This

can be accomplished by using an alloy such as AlxGa1−xAs that lets the band gap be

tuned as a function of the composition x, ranging up to a few eV from GaAs to AlAs

depending on the crystal orientation. These are examples of binary III–V semiconductors

formed from elements in those columns of the periodic table; II–VI semiconductors such

as CdSe are also useful, particularly for optoelectronics (Chapter 12).

11.3 JUNCTIONS, DIODES, AND TRANSISTORS

Fortified with the basic ideas of energy bands and the Fermi–Dirac distribution, we are

now ready to tackle devices made out of semiconductors. These will rely on the properties

of junctions between materials. The Fermi energy (or, to be correct at T 6= 0 K, the
chemical potential) in a material can be thought of as the height of an energy hill that the

electrons are traveling on. If a drop of water is added to a bucket, its energy depends on

how much water is already in the bucket. If two buckets filled with differing amounts of

water are brought into contact and a partition between them is removed, then water will

spill from one bucket to the other in order to equalize the energy difference. Similarly,
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when two semiconductors are brought into contact as shown in Figure 11.5, there is a

transient current from the material with the higher Fermi level to the lower one until

the Fermi levels are aligned, removing the energy gradient that is driving the current.

A potential difference then appears between the bands that is equal to the potential

difference ∆V between the two Fermi energies. This energy gradient is associated with

a local electric field that is produced in the transition (or depletion or space-charge)

region by the charge that moved between the materials. Once the bands have “bent” at

the interface no average current will flow. Even though electrons and holes will recombine

if they are given a chance because that lowers their energy, the electrons on the n side
cannot climb up the potential hill to reach the p side. Similarly, holes behave oppositely
from electrons, and so they cannot climb down the hill to reach the electrons.

p
anode cathode

reverse biasforward bias

DV

n p

DV

n

DV V–

V

no bias

Figure 11.5. Biasing a p–n diode.

If an electron is thermally excited from the valence band to the conduction band

it leaves a hole behind, creating an Electron–Hole Pair (EHP). Normally these will

quickly recombine, but if they form near the interface then the junction field will sweep

the electron to the n side and the hole to the p side. This results in a generation current.
In addition, there is a probability proportional to e−∆E/kT = e−q∆V/kT for a carrier to be

thermally excited over the energy barrier at the junction and then diffuse out, creating a

diffusion current.

If a bias potential V is applied across the junction in a p–n diode, it will split the

Fermi energies, reducing or increasing the size of the barrier depending on the polarity.

The diffusion current will then be

Idiffusion = Ae
−q(∆V −V )/kT = Ae−q∆V/kT eqV/kT , (11.51)

where A is a constant that depends on device details including the junction geometry

and the amount of doping. It can be found by recognizing the the generation current is

independent of the bias voltage (until that becomes large enough to eliminate the band

bending), and that at zero bias the two currents must cancel, so that their sum is

I = Igeneration
(

eqV/kT − 1
)

. (11.52)

This characteristic I–V curve is shown in Figure 11.6. As the forward bias is increased,
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the current quickly increases and the diode turns on. The bias voltage appears as a diode

drop potential in conduction across the diode; 0.6 V is a typical value. The diode blocks

current in the opposite direction, letting through just the small generation current that is

independent of bias but does depend on temperature (providing a useful thermometer).

I

V

breakdown

diode
drop

forward biasreverse bias

Figure 11.6. I–V curve for a p–n diode.

This is a DC relationship, which will roll off at higher frequencies because of the

capacitance associated with the charge induced at the junction. It also breaks down at

higher fields through two important mechanisms. If the bands are bent far enough, the

valence and conduction bands come so close at the junction that the wave function for

carriers overlaps between them, creating a probability for them to tunnel between the

bands. Because the voltage at which this Zener breakdown occurs can be selected by the

doping, it is useful for providing voltage references. And if the field is strong is enough

to accelerate a carrier so fast that it excites more carriers when it scatters, avalance

breakdown occurs. The ensuing cascade makes is possible to detect very small numbers

of electrons or photons.

Something similar happens at the interface between a semiconductor and a metal,

shown in Figure 11.7. When the materials are brought together, a current must initially

flow to equalize the Fermi levels. But because the metal cannot have an internal electric

field the band bending occurs entirely on the semiconductor side. This is called aSchottky

barrier, and it once again rectifies the current, which can be either a bug or a feature. It’s

a simpler way to fabricate a diode because all that’s needed is a metallization, but it also

means that any lead attached to a semiconductor becomes a diode. Creating linear ohmic

contact requires extra effort, such as heavily doping the semiconductor at the interface

to keep the transition region thin enough to permit tunnelling.

If one junction is good, two are even better. Consider the back-to-back diodes shown

in Figure 11.8, forming a bipolar transistor. The center region is called the base and

the sides are the emitter and collector. In the absence of any bias, current cannot flow

into either the emitter or collector. But if the emitter–base junction is forward-biased

and the collector–base junction is reverse-biased then a current ICE can flow through the
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m n m n m p

Figure 11.7. A Schottky barrier between a semiconductor and a metal.

collector–emitter circuit. As before, the emitter–base junction will have an I–V curve of
the form of equation (11.52), but now in addition to determining its own current flow

VBE will set that between the emitter and the collector if a voltage source is connected
across them,

ICE = IS
(

eqVBE/kT − 1
)

= βIBE . (11.53)

This is called the Ebers–Moll model of a transistor, with a saturation current IS. Because
a voltage determines a current this is a transconductance device, but since VBE also
produces a current IBE it’s simpler to understand the transistor as a current amplifier.
What makes this device so useful is that a small current between the emitter and base

can control a much larger current between the emitter and collector; the proportionality

factor β is typically on the order of 100.

reverse bias

forward bias

p nn

emitter base collector emitter

collector

base

Figure 11.8. An n–p–n transistor.

Bipolar transistors do have a significant liability: keeping them turned on draws a

steady current through the base. This limits their use in applications for which power

consumption or heat dissipation need to be minimized (i.e., almost all of them). Figure

11.9 show how a Field-Effect Transistor (FET) cures this by using an electric field

rather than a current as the control input. A carrier source and drain are separated by a
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semiconducting channel, covered by a thin insulating layer and a metallic gate. One of

silicon’s great virtues is that it readily grows a tough SiO2 oxide that is a good insulator,

making this a Metal-Oxide-Semiconductor FET orMOSFET.

gate

source

drain

source drain

gate

insulator

channel

p-type substrate

no bias small bias large bias

– – – – –

Figure 11.9. An NMOS FET.

If the channel is p-type, and the source and drain are n-type, this is an NMOS
transistor because electrons are the current carriers. Figure 11.9 plots the band structure

along a vertical slice through the gate, oxide, and substrate. The overlap across the thin

oxide aligns the Fermi levels of the gate and the substrate. As the gate is biased relative

to the substrate the Fermi levels split, but the position of the bands at the interface is

fixed by the material properties. This is accomplished once again by the formation of

a field gradient in a transition region. As the substrate Fermi level gets closer to the

conduction band at the surface, excess electrons begin to appear in the channel. The

gate–oxide–substrate combination can be thought of as a capacitor with a semiconductor

for one plate. Charge on the gate must be matched by image charge in the substrate, but

because it is semiconducting this image charge also changes the conductivity. Unlike the

continuous base–emitter current drawn by a bipolar transistor, a MOSFET is a voltage-

controlled device that dissipates control current only when the gate voltage is changing

and hence charging or discharging this capacitance.

Figure 11.10 plots the current IDS between the drain and source as a function of the
voltage VGS between the gate and source, for a fixed voltage VDS between the drain and
source. An enhancement mode NMOS MOSFET is doped so that no current will flow

for VGS = 0. As VGS is increased it reaches the threshold voltage VT that brings the
Fermi level between the valence and conduction bands so that electrons start to appear

in the channel. Further increasing VGS increases the number of carriers, reducing the
channel resistance. A depletion mode device is doped so that the Fermi level starts out

high enough for there to be some conduction carriers; a negative threshold voltage is

needed to turn this kind of transistor off. In a PMOS MOSFET the channel is n-type
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Figure 11.10. Threshold currents in MOSFETs, shown for a fixed VDS.

and the source and drain are p-type, the current is carried by holes, and decreasing the
gate voltage increases their concentration.

IDS

VDS

VGS

Figure 11.11. I–V curves for an NMOS FET as a function of the gate voltage.

For small values of VDS the current IDS will be linear (ohmic), as shown in Figure
11.11. Increasing VGS decreases the resistance, thereby increasing the slope. But as VDS
is increased the electrons in the channel are also pulled towards the source, eventually

pinching off the channel and saturating the current.

11.4 LOG IC

TTL (Transistor–Transistor Logic) integrates bipolar transistors on a semiconducting

substrate to implement logical functions. While historically significant, its use is limited

by the static current drawn by a gate when it is turned on. MOSFETs are an attractive

alternative, but the asymmetry shown in Figure 11.10 presents a serious obstacle to their

use.

Consider the cases shown in Figure 11.12. An NMOS and a PMOS enhancement-

mode FET are being used to drive another FET, represented by its gate capacitance. In

case (a), an NMOS FET is turned on by applying the supply voltage to the gate. For
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MOSFETs this voltage is called VDD (for historical reasons, the D is for drain; for bipolar
transistors the supply is usually labeled VCC, C for collector). Assume that the capacitor
is initially charged to VDD and that the input to the FET is grounded. Because electrons
are the charge carriers in an NMOS FET, they must flow from the source at ground to

the positive capacitor at the drain to discharge it. Since VGS remains at VDD > VT the
FET stays on and the capacitor is fully discharged. Compare this to case (b), with the

capacitor starting out grounded and VDD applied to the input. This is a problem. For the
capacitor to charge up, electrons must flow from it, so it is the source. But as its voltage

rises, VGS will eventually drop below VT, shutting of the FET with VDD−VT left on the
capacitor instead of the desired VDD. Because an NMOS FET can discharge a capacitor
to ground, it can output a logical 0, but it can’t output a logical 1 because it can’t charge

a capacitor up to the positive supply. Likewise, a PMOS FET can output a 1 but not a

0.

GND+VT

VDD

GND

GNDGND

VDD

GND

VDD

VDD–VT

GND

VDD

GND

VDDVDD

VDDGND

(a) (b)

Figure 11.12. Charging and discharging capacitors through MOSFETs.

In integrated electronics, as in life, the solution to shared imperfections is a relationship

based on complementary strengths. CMOS (Complementary Metal Oxide Semicon-

ductor) logic uses pairs of MOSFETs, as shown in Figure 11.13 for the simplest circuit

of all, an inverter. If the input is grounded, the PMOS transistor is on and the NMOS

transistor is off, therefore the output is pulled up to VDD, which the PMOS transistor can
do well. If VDD is input, the PMOS transistor turns off and the NMOS transistor turns
on, bringing the output to ground which it can do well. We have inverted the input. For

either state only one transistor is turned on, it is used in the mode in which it works

best, and current is drawn only during state changes. In practice, it is important that

the PMOS and NMOS threshold voltages be well matched, otherwise during transitions

there may be a period when they are both turned on and a crowbar current will flow

from VDD to ground.
A gate with two inputs is shown in Figure 11.14. Now two NMOS transistors are

connected in parallel to ground, and two PMOS transistors are connected in series to

VDD. If A = B = GND then the output will be pulled up to VDD, and in all other cases
it will be pulled down to ground. This is the NOR (not-or) function. Similarly simple

circuits can implement the other basic logical functions. From these two examples the

essential principle of CMOS design should be clear: NMOS FETs are used only to pull

outputs to ground, and PMOS FETs are used only to pull them to VDD.
Because the NOR gate is a nonlinear function of its arguments (Table 11.1), it is possible
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Figure 11.13. A CMOS NOT gate and its circuit symbol.

VDD
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A B
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B
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Figure 11.14. A CMOS NOR gate.

to obtain any logical function by combining it with NOT gates [Hill & Peterson, 1993].

A different nonlinear gate such as AND could be used as a primitive instead, but it is

not possible with a linear gate such as XOR (exclusive-or) . An arbitrary logical function

Table 11.1. Linear (XOR) and nonlinear (NOR) logical functions.

x 1+x y XOR(x,y) XOR(1+x,y) NOR(x,y) NOR(1+x,y)

0 1 0 0 1 1 0
0 1 1 1 0 0 0
1 0 0 1 0 0 1
1 0 1 0 1 0 0
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can in fact be realized in a two-level implementation using just a layer of NOT gates

connected to a layer of NOR gates, so that the propagation delay of a signal through the

circuit is fixed. This configuration is available packaged in a Programmable Logic Array

(PLA) that can be used as a universal logical element. The technique most commonly

used to reduce an arbitrary logical function to the smallest two-level implementation is

the Quine–McCluskey algorithm, first developed by the philosopher W.V. Quine long

before integrated circuits existed, in order to solve a puzzle in mathematical logic [Quine,

1952; McCluskey, 1956].

So far we’ve been discussing combinatorial logic, in which the output is determined

by the instantaneous inputs. Sequential logic adds memory and a clock signal to drive

transitions, so that the output can depend on the past as well as present values of the

input. Clocks will be covered in Chapter 15; the last circuits to be considered here

are Random Access Memories (RAM), starting with the Static RAM (SRAM) cell

shown in Figure 11.15. The bit there is stored in a bistable configuration of two coupled

inverters. If the input to one of the inverters is a logical 1 its output will be a 0, and this

input to the other inverter will produce an output of 1 from it, agreeing with the input to

the first inverter. The two inverters will also be in a stable configuration if the output of

the first one is 1 and that of the second one is 0. To make this into a memory, transistors

are connected between the outputs of the inverters and bit read/write lines. These pass

transistors are turned on by row enable lines, letting a particular combination of row

and bit lines address a unique bit. If sense amplifiers are connected to the bit lines, they

can measure the state of the inverters and read out the bit, and if drive amplifiers are

connected to the bit lines they can write a bit by forcing the inverters into a desired state.

Two bit lines (the bit and its complement) are needed to make sure that both inverters

end up in the desired state.

VDDVDDbit –bit bit –bit

row

Figure 11.15. A CMOS SRAM cell.

The basic SRAM cell requires six transistors. In 1966 Bob Dennard at IBM realized

that it is possible to make a memory with just one transistor and one capacitor per

bit, significantly increasing the bit density [Dennard, 1968]. In such a Dynamic RAM

(DRAM) cell the bit is stored as charge on a capacitor, as shown in Figure 11.16. When

the row and bit enable lines are turned on, charge can be written into the capacitor to

store a bit, or an amplifier can detect the charge to read the bit. Unlike an SRAM cell,

this read operation is destructive because the capacitor is used to charge up the bit line

while it is being read, and even if a bit isn’t read the charge will eventually leak away
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from the capacitor, therefore DRAM cells require complex refresh circuits. However,

the space saving from having 1 transistor per bit much more than makes up for this extra

complexity at the periphery of the memory. DRAM is also slower than SRAM because

the bit line is passively driven by a capacitor rather than actively driven by an inverter.

Because of this, less dense SRAM is used for fast cache memory, and denser DRAM is

used for larger slower primary memories.

bit

row

Figure 11.16. A CMOS DRAM cell.

Both SRAM and DRAM are volatile memories that must be powered to maintain

their data. Since power can run out long before the value of data does, particularly in

mobile or embedded applications, non-volatile memories are needed. The most common

solution is to add a floating gate to the MOSFET structure shown in Figure 11.9. This is

an electrode between the gate and the channel, completely surrounded by the insulating

oxide. Charge stored on the floating gate can be read through the image charge it induces

in the substrate changing the conductivity of the channel, and because it is completely

isolated the charge retention times can be very long (many years). In EPROM (Erasable

Programmable Read-Only Memory), charge is deposited on the floating gate by using

a write voltage large enough to excite high-energy “hot” electrons over the gate’s barrier,

and the entire memory is erased by exposing the die to ultraviolet light with enough

energy to knock the electrons back out. Because of the tens of volts and ultraviolet light

needed for writing and reading, dedicated programmers are used for changing EPROM.

In EEPROM (Electrically Erasable Programmable Read-Only Memory), the oxide

thickness is reduced from ∼100 nm to ∼10 nm, making it possible for electrons to
tunnel onto and off of the floating gate [Fowler & Nordheim, 1928]. This requires an

extra transistor per cell to control the charging, and can reduce the charge storage time

and reliability of the device, but it permits in-circuit access to read and write arbitrary bits.

Flash memory is a compromise that writes with hot electrons and erases with tunneling,

permitting in-circuit programming, using just one transistor per cell at the expense of

restricting erasure to memory sectors rather than individual bits.

Because of its relative ease of fabrication, low power consumption, and high pack-

ing density, CMOS dominates integrated circuit production. This has historically been

accompanied by slower switching speeds because of the RC charging time associated

with gate transitions. This is why higher-frequency applications have used higher-power

bipolar TTL or ECL (Emitter-Coupled Logic) families, or higher-mobility materials
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such as GaAs. But the speed of CMOS has increased beyond 1 GHz because of benefi-

cial features of device scaling. Once the materials become pure enough, and the channel

drops well below 1 µm, an electron can travel through a transistor without scattering.

Such ballistic or hot electron devices can operate at speeds far beyond what the bulk

mobility would suggest. CMOS is still limited in its ability to source or sink current; for

this reason BiCMOS processes marry the best of both worlds by using MOSFETs for

on-chip logic and bipolar transistors for driving external signals.

11.5 Limits

In the 1960s, Gordon Moore of Intel noticed that the number of transistors on a chip,

along with almost every other specification, was doubling every one and a half years. This

exponential growth has come be known asMoore’s Law [Moore, 1979]. It is not a law of

nature; it is an observation about exceptional engineering efforts. The many decades over

which it has applied have made it possible to foretell the future of Very-Large-Scale

Integrated circuits (VLSI) with surprising prescience. On the one hand, seemingly

insurmountable obstacles have been overcome each year to continue the scaling; on the

other hand, sometime around 2020–2040 most devices parameters will simultaneously

reach fundamental physical limits [Keyes, 1987]. Wires as we know them cannot be

thinner than one atom, memories cannot have fewer than one electron, and to be viable

the chip fab plants must cost something less than the GDP of the planet.

While these impending limits are a cause for concern about continued progress in im-

proving the performance of electronics, the reality is that gate speeds or bit densities are

already no longer the serious constraints they once were for many applications. Some of

the most interesting challenges now lie beyond processing with detecting, communicat-

ing, and presenting electronic information. Nevertheless, because each decade of device

improvement has led to corresponding new and generally unforeseen opportunities, it’s

still worth asking how to maintain and extend this pace.

The present battleground is the physics of microfabrication [Brodie & Muray, 1982].

Chips are currently produced using lithographic techniques to optically define device

features. The diffraction limit has pushed the optical systems to shorter and shorter

wavelengths, but this is still well above atomic sizes. True atomic-scale patterning has

been accomplished using Atomic Force Microscopes (AFMs) [Cooper et al., 1999] and

Scanning Tunneling Miscroscopes (STMs) [Stroscio & Eigler, 1991] , which piezoelec-

trically scan a sharp tip above a sample and follow the atomic topography by measuring

either the cantilever deflection or the electron tunneling current. While these scanning

probe systems are slow, lithographically-produced parallel arrays of tips promise to yield

commercially useful writing speeds.

The billions of dollars that must be invested in the machinery to deposit, expose, etch,

implant, dope, diffuse, dice, and test chips in a single fab line are quickly becoming the

more serious scaling constraint. An alternative is to eliminate the fab line entirely and use

table-top printing processes, which can attain nanometer features [Jackman et al., 1998;

Ridley et al., 1999]. A related limit that receives less attention but may become even

more economically significant is the lowest cost per packaged part, which unlike most

other specifications has remained relatively constant over the VLSI scaling era at around
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10 cents. An alternative approach to bring this down below a cent for applications such

as electronic tagging of commodity objects is to remotely interrogate natural materials

[Fletcher et al., 1997].

One of the reasons chip fabrication is so expensive is that as the size of chips grows

while their minimum feature size shrinks, the impact of a single speck of dust is magnified.

A very small defect can doom an entire part. The conventional response has been to use

ultrapure materials in ultraclean rooms, but even so the yields of state-of-the-art chips

are usually so bad that they are considered a sensitive trade secret (on the order of a few

percent). A radically different approach is to design machines with the expectation that

most of their parts will be faulty [Heath et al., 1998]. Components can be hierarchically

packaged in modules of greater and greater complexity, which can then be adaptively

rewired based on self-testing. There is some empirical basis for this kind of partitioning,

through Rent’s rule, the observation that many engineered (and biological) systems have

a power-law scaling relationship between the number of connections to a subsystem and

the number of functional units in that subsystem, with an exponent typically between

1/2 and 1 [Landman & Russo, 1971; Vilkelis, 1982].

Thermodynamics presents profound limitations that are also of great short-term sig-

nificance [Gershenfeld, 1996]. 10 W laptops run out of power before airplane trips end,

the 100 W desktop computers in a building taken together can consume more power

than air conditioning systems use or can handle, and it’s a challenge to keep a 100 kW

supercomputer from melting through the floor. As we saw in Section 4.5, the roots of

information theory grew out of the study of the efficiency of steam engines, and are now

returning to help optimize the thermodynamic performance of computing machines [Leff

& Rex, 1990]. Rolf Landauer resolved a long-standing puzzle by showing that erasure is

where computation necessarily incurs a thermodynamic cost, because the heat associated

with the change in entropy that follows from resetting an unknown bit to a known state

is Q = TdS = kT log 2 [Landauer, 1961]. Charles Bennett went further to unexpectedly
demonstrate that universal computation is possible without any erasure by reversibly

rearranging inputs and outputs [Bennett, 1973]. Since kT log 2 ≈ 10−21 J, it was orig-

inally thought that these limits were remote. More recently, it’s been appreciated that

the design guidance they provide is applicable at much higher energy scales. Reversible

logic seeks to recover rather than dissipate the energy associated with bits being erased

[Merkle, 1993; Younis & Knight, 1993], and adiabatic logic makes changes no faster

than they are needed (Problem 11.5) [Athas et al., 1994; Dickinson & Denker, 1995].

Both principles have been used in fabricating circuits that show promising reductions in

power consumption.

Even more fundamental are limits associated with physical constants. One is the speed

of light. Synchronous logic requires distributing the clock over an entire chip each cycle;

aside from the charging energy this entails, it also limits the cycle time to the chip

size divided by the speed of light. One response is to eliminate clock delivery by using

asynchronous logic, in which gates assert their output when they receive valid inputs

rather than a global clock signal [Birtwistle & Davis, 1995]. This can also be beneficial

for reducing dissipation and wiring complexity, although the ultimate limit on clock

speed comes from the quantum energy–time uncertainty relationship, which argues for

using the maximum available energy in the minimum possible number of gates in order

to minimize the communication time [Lloyd, 2000].
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Another is the size of atoms. As feature sizes drop below 0.1 µm, continuum ap-

proximations can no longer be made. This shows up in electromigration, the motion

of individual atoms due to the momentum transported by the electronic current, which

leads to wiring failures that must be prevented through careful attention to the metallurgy

and current density. The discreteness of current is turned from a bug into a feature in

a Single-Electron Transistor (SET) [Likharev & Claeson, 1992; Grabert & Devoret,

1992]. An electron can tunnel across an insulator onto a conducting island only if states

are available to it on both sides, creating a periodic modulation called the Coulomb block-

ade in the charging current due to the integer number of electrons allowed on the island.

Among other applications, this can be used to create a memory cell that stores a single

electron [Durrani et al., 1999].

Once devices reach these limits, further advances are possible only by finding new

degrees of freedom to represent and manipulate information. One option is to recognize

that analog nonlinear systems can be used for far more than binary logic; some examples

will be seen in Chapter 14. Another is to retain the notion of bits, but use quantum

mechanics to describe their logical as well as physical states. The remarkable implications

of this will be explored in Chapter 16.

silicon nitride blue diode [Takashi M. Ukai & Nakamura, 1999] laser [Nakamura et al.,

2000]

graphene, quasiparticles relativistic massless Dirac fermions [Geim & Novoselov, 2007]
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single electron transistor [Kastner, 1992] logic [Chen et al., 1996]
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et al., 2007]
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11.7 Problems

(11.1) (a) Derive equation (11.28) by taking the integral and limit of equation (11.27).

(b) Show that equation (11.29) follows.

(11.2) What is the expected occupancy of a state at the conduction band edge for Ge,

Si, and diamond at room temperature (300 K)?

(11.3) Consider Si doped with 1017 As atoms/cm3.

(a) What is the equilibrium hole concentration at 300 K?

(b) How much does this move EF relative to its intrinsic value?

(11.4) Design a tristate CMOS inverter by adding a control input to a conventional

inverter that can force the output to a high impedance (disconnected) state. These

are useful for allowing multiple gates to share a single wire.

(11.5) Let the output of a logic circuit be connected by a wire of resistance R to a load
of capacitance C (i.e., the gate of the next FET). The load capacitor is initially

discharged, then when the gate is turned on it is charged up to the supply voltage

V . Assume that the output is turned on instantly, and take the supply voltage to
be 5 V and the gate capacitance to be 10 fF.

(a) How much energy is stored in the capacitor?

(b) How much energy was dissipated in the wire?

(c) Approximately how much energy is dissipated in the wire if the supply voltage

is linearly ramped from 0 to 5 V during a long time τ ?
(d) How often must the capacitor be charged and discharged for it to draw 1 W

from the power supply?

(e) If an IC has 106 transistors, each dissipating this charging energy once every

cycle of a 100 MHz clock, how much power would be consumed in this worst-

case estimate?

(f) How many electrons are stored in the capacitor?


