
15 Measurement and Coding

As the number of electrons or photons used to represent a bit becomes small enough
to be counted without taking one’s shoes off, the means to measure them must become
correspondingly sophisticated. Weak signals must be separated from strong backgrounds,
using devices that may present a range of constraints on how they can and cannot be
used. The only certainty is that mistakes will be made; to be useful, a system must be
able to anticipate, detect, and correct its errors. And all this must of course be done at
the lowest cost, highest speed, greatest density, . . . .

This chapter will study a collection of techniques for addressing these problems, start-
ing with the low-level instrumentation that measures a signal, turning to the mid-level
modulation used to detect it, and closing with the high-level coding that represents infor-
mation in it. A striking example that both demonstrates and helped develop these ideas
is communication with deep-space probes. As they’ve traveled further and further out
into the solar system the rate at which they can send data back to the Earth has remained
roughly constant, because the decreasing signal strength has been matched by increasing
communications efficiency due to using bigger antennas, with more sensitive electronics,
and better compression and error correction [Posner & Stevens, 1984].

These important topics might appear to be mundane matters of engineering detail,
hardly worth considering in a book about physics. That’s wrong at three levels. First,
without these details all the clever physical insight in the world would not be able to
influence anything, so they provide the context needed to understand how to develop
mechanisms into working devices. Second, these details make or break practical systems,
turning fundamental physical limits into engineering design constraints. And finally, there
are in fact very deep connections between these ideas and the character of physical law.
We’ll see that as we come to understand both engineering and nature better and better,
it makes less and less sense to distinguish between the physical laws governing a system
and the information represented in it.

15.1 INSTRUMENTATION

15.1.1 Amplifiers

15.1.2 Operational Amplifiers

Measuring a signal usually requires some combination of amplification and filtering. The
workhorse for manipulating analog signals is the operational amplifier (op-amp), an



240 Measurement and Coding

(almost) ideal amplifier that is remarkably versatile. Op-amps are available with input
noise floors down to nV/

√
Hz, and output power up to kilowatts, at costs ranging from

pennies to hundreds of dollars.
The key insight that led to the development of op-amps is that, while it is difficult to

build an amplifier with a specified gain, a differential amplifier that has an enormous gain
can have its properties determined solely by a feedback network. Furthermore, since the
input–output relationship is determined by passive components in the feedback network,
such an amplifier can also be very linear even though its transistors or vacuum tubes are
not [Black, 1934].

An op-amp has two inputs; the output is the difference between the signal at the
positive side and the signal at the negative side, multiplied by a gain of ∼106. The exact
value of the gain is not a reliable parameter, but consider the circuits shown in Figure
15.1. The op-amp will drive the output so that its non-inverting input is at the same
potential as the inverting input. In these cases the non-inverting connection is grounded,
therefore the inverting lead acts as a virtual ground: it isn’t actually connected to ground,
but it behaves like one as long as the op-amp is able to drive its output so that the inverting
input matches the grounded non-inverting input.

Most op-amps draw so little input current that it is a good approximation to assume
that no current flows into the inputs. Requiring that the total current coming into and
going out of the inverting node of the first circuit in Figure 15.1 adds up to zero gives
the relationship

Vin − 0
Rin

+
Vout − 0
Rout

= 0 ⇒ Vout = −Rout

Rin
Vin . (15.1)

The output, which is inverted relative to the input, is given simply by the ratio of the
two resistors. Related configurations accept current inputs or provide current outputs
(Problem 15.1), and replacing one or the other of the resistors with a capacitor gives an
integrator or a differentiator (Figure 15.1). Note that in a practical integration circuit a
large resistor is usually added in parallel with the feedback capacitance, otherwise any
small offset voltage error in the op-amp will be integrated up and eventually drive the
output to the power supply rails (limits).

Op-amp integrators and differentiators can be used as low- or high-pass filters, and
even to solve differential equations in an analog computer (although analog comput-
ers usually solve equations written just in terms of integrals because differentiation can
increase the noise in the result). They were very important up to the 1950s for solv-
ing differential equations, and although they’ve been almost entirely replaced by digital
computers they are still useful when fast, cheap, and continuous solutions are needed.

Balancing currents at the inverting nodes shows that the circuits in Figure 15.2 sum or
difference their inputs. A differential amplifier is particularly useful for instrumentation
because it can be used to measure a small difference in two signals that have a large
common component, such as the same external interference. Because the performance
is limited by how close the resistor values are, carefully matched pairs of resistors are
available for differential amplifiers. Another limitation is the Common Mode Rejection
Ratio (CMRR) of the op-amp, the ratio of the response to the difference in the input
signals divided by the common value of the signals. This can easily be over 100 dB.

Common op-amps are internally compensated with a single-pole filter [Gershenfeld,
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Figure 15.1. Op-amp amplifier, integrator, and differentiator.
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Figure 15.2. Summing and differential amplifiers.

1999a] to ensure stability [Millman & Grabel, 1987]. Their gain as a function of frequency
is

G(ω) =
Gol

1 + i ωωol

, (15.2)
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where Gol is the open-loop DC gain without an external feedback circuit, and ωol is
where the open-loop filter rolls off. The frequency ω1 where the gain is reduced to unity
is easily found to be

1 =

∣∣∣∣∣ Gol

1 + i ω1
ωol

∣∣∣∣∣
=

Gol√
1 + ω2

1/ω
2
ol

ω2
1 = (G2

ol − 1)ω2
ol

ω1 ≈ Golωol (15.3)

(since Gol � 1). This is why ω1 is called the gain–bandwidth product. It determines the
highest frequency that an op-amp can operate at; if the frequency response is reduced
then higher gain is possible (Problem 15.2).

The input impedance and output impedance of an amplifier are other important
specifications. These are the effective impedances seen by a device driving, or being
driven by, the amplifier. The input impedance should be as large as possible so that the
amplifier does not load its source; in an FET op-amp it can be∼1012 Ω, while in a bipolar
op-amp it can be as small as ∼109 Ω The output impedance should be as low as possible,
otherwise the output voltage will depend on how much current is being drawn. Typical
values range from ohms to kilo-ohms.

A differential amplifier has two practical constraints: its CMRR depends on how well
the resistors are matched, and the input impedance is set by the input resistors. For
very high output-impedance sources, the current drawn by these input resistors can be
unacceptable. These problems can be fixed by using an instrumentation amplifier, shown
in Figure 15.3. The inputs go directly into buffer amplifiers so that the input impedance is
just the (large) amplifier input impedance. The outputs are connected in a clever divider
circuit that amplifies the difference between the signals but not their common mode, and
this goes to a unity gain differential amplifier that can have precision trimmed on-chip
resistors. Balancing currents at the inverting pins gives

Vout− − V−
R1

+
V+ − V−
R2

= 0
Vout+ − V+

R1
+
V− − V+

R2
= 0 (15.4)

or

Vout− =
R1

R2
(V− − V+) + V− Vout+ =

R1

R2
(V+ − V−) + V+ . (15.5)

The important change here is that the difference between the inputs is being amplified
by R1/R2, while the individual signals which can contain common mode noise are passed
through without gain. The output from the differential amp is then

Vout = Vout+ − Vout− =
(

1 +
2R1

R2

)
(V+ − V−) . (15.6)

The differential amp has a much easier job than before, removing the smaller common
mode noise from the larger amplified difference signal from the first stage.
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Figure 15.3. An instrumentation amplifier.

15.1.3 Grounding, Shielding, and Leads

An amplifier is only as good as its leads. While this reasonable observation has led to
the unreasonable marketing of rather pathological cables to gullible audiophiles, it is true
that small changes in wiring can have a very large impact on a system’s performance
(both good and bad). The goal is to make sure that as much of a signal of interest gets to
its destination, and as little as possible of everything else. The polite term for this area
is electromagnetic compatibility, asking, say, how to ground your battleship so that its
electronics can withstand a nuclear electromagnetic pulse [Hunt & Fisher, 1990; Mitchell
& George, 1998].
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Figure 15.4. Grounding woes: (a) ground loop and capacitative pickup, (b) cross-talk and
improper shield grounding, (c) magnetic pickup, and (d) shielded twisted pair.
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Although the principles for good wiring practice can appear to be closer to black magic
than engineering design, they are really just an exercise in applying Maxwell’s equations.
Consider the series of circuits shown in Figure 15.4. In (a), a source is directly connected
to a single-ended amplifier, introducing two serious problems. First, any other fluctuating
voltages around the signal lead can capacitatively couple into it, producing interference.
Second, the source and amplifier are grounded in different locations. Current must flow
through the pathway connecting the grounds, and so any resistance there will lead to a
change in the relative potentials. Even worse, this difference will depend on the load, and
on everything else using the ground. This is called a ground loop; thick conducting braid
is a favorite tool for combatting it by reducing the resistance between ground locations.
Well-designed systems go further to maintain separate ground circuits for each function,
with plenty of capacitance added to each as filters: one ground for digital logic with its
high-frequency noise, one for motors with their large current surges, a quiet one for
sensors requiring little current but good voltage stability, and so forth. These join only
at a single ground mecca node.

Circuit (b) cures the capacitative pickup by surrounding the wire with a conducting
shield, establishing an equipotential around it. Related tricks are building a conducting
box around a sensitive circuit to provide electrostatic protection, and winding leads com-
ing into and out of a circuit around a toroidal transformer core to provide inductive
filtering of high-frequency noise. A cable shield comes at the cost of introducing a large
capacitance from the source to the shield; for typical coaxial cable this can be tens of
picofarads per foot, resulting in significant signal loss. That can be cured by using a
unity-gain amplifier to drive the outer shield with the potential of the inner conductor.
As long as the amplifier is fast enough, the shield will track the signal, effectively re-
moving the cable capacitance. Special followers are available for this purpose, because
if the amplifier is not fast enough, or cannot source enough current, then the dynamics
of the cable-shield system can swamp the signal of interest. Circuit (b) also grounds the
shield at both ends. This is effective if a heavy shield is used, so that the resistance of
the connection is very small, but otherwise it brings the ground loop even closer to the
signal lead.

In (c), both ends of the signal source are connected to a differential amplifier, and
the cable shield is tied at one end. Not only is the shield not used as a continuous
circuit, we don’t want it to be available as one: its job is just to maintain the equipotential
around the signal leads. And because the signals now arrive differentially, the amplifier
can remove any common-mode interference that remains. That unfortunately does not
help with another important noise source, time-varying magnetic flux linking the circuit,
frequently coming from power lines. Even a high-permeability shield can’t keep all the
flux from threading between the conductors, and the induced potential appears as a
voltage difference rather than a common mode shift.

The straight conductors are replaced in (d) with shielded twisted pair. The loops do
two things: they reduce the cross-sectional area for flux pickup, and the direction of the
induced current alternates between loops, approximately averaging it out. This is why
shielded twisted pair, grounded at one end, is used most often for low-level signals. It
ceases to be useful when the signal wavelength becomes on the order of the conductor
spacing, but that cutoff can extend up to microwave frequencies.

If the measurement apparatus need only respond to a signal, a high input-impedance
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amplifier can be used that does not load the source. But if the apparatus is also responsible
for providing current to excite the measurement, there can be a substantial voltage drop
across the connecting leads that will vary as the load changes. This problem is cured by
making a four-terminal measurement, shown in Figure 15.5. Each lead on the device
under test, here taken to be a variable resistor, has two connections. One goes to a voltage
or current source that drives the current through the leads and the device. And the others
are used to measure the voltage drop across the device. The resistance in the current loop
does not matter, because the current is the same everywhere. And the resistance in the
voltage loop does not matter, because the voltmeter draws essentially no current. This
is why precision reference resistors have four terminals, even though they appear in two
apparently identical pairs.

Figure 15.5. A four-terminal measurement.

When all these techniques fail, it’s still possible to give up on electromagnetic shielding
entirely and couple optically. For long runs, information can be sent in optical fibers, and
many kinds of sensing are possible with all-optical devices (Chapter 14). Even within an
electronic circuit, optoisolators pair an LED with a photodiode in a single package to
provide a logical connection without an electrical one. These are used, for example, in the
Musical Instrument Digital Interface (MIDI) specification to prevent ground loops
in audio equipment [Lehrman & Tully, 1993], and in medical instruments to prevent
ground loops in people.

15.1.4 Bridges

Many sensors, such as strain gauges and magnetoresistive heads, require detecting small
impedance changes. While it’s almost always preferable to measure small changes in small
signals rather than find small changes in the value of a large signal, it’s rarely possible
to arbitrarily change the baseline impedance of these devices. Bridge circuits provide a
solution to this problem.

If a voltage V is dropped over two resistors in series, a fixed one with resistance R1

and a variable one R2 (Figure 15.6), the measured voltage across the variable resistor will
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Figure 15.6. Measuring a small resistance change with a bridge.

be

∆V =
V R2

R1 +R2
. (15.7)

If the two resistors differ by the desired sensor signal, R1 = R and R2 = R + δ, then

∆V =
V R

2R + δ
≈ V

2

(
1− δ

2R

)
. (15.8)

A small resistance change leads to a small change in a large voltage. If instead the resis-
tances are arranged in a Wheatstone bridge, the voltage difference between the arms of
the bridge is

V = IL(R1 +R3) = IR(R2 +R4)

∆V = IRR4 − ILR3

= V

(
R4

R2 +R4
− R3

R1 +R3

)
. (15.9)

Now if R1 = R3 = R4 = R and R2 = R + δ then

∆V = V

(
R

2R + δ
− R

2R

)
(15.10)

= V

(
1

2 + δ/R
− 1

2

)
≈ −V

2
δ

2R
.

The small voltage change can now be measured directly without a large offset. This same
analysis applies to complex impedances for variable capacitors and inductors.

15.1.5 Network Analyzers

15.2 MODULATION AND DETECTION

So far we’ve worried a great deal about the integrity of the signals we’re trying to measure,
but not at all about their design. Since this can usually be selected in an engineered system,
the next group of techniques seek representations of information that help with signal
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separation (distinguishing between noise and the signal), and with satisfying constraints
such as limited bandwidth.

15.2.1 Synchronous Detection

If the quantity of interest can periodically be modulated by the measurement apparatus,
synchronous detection with a lock-in amplifier can find a weak signal buried in much
larger noise (Figure 15.7). For a bridge circuit the modulation could be done by replacing
the DC voltage source with an AC one; for an optical measurement the modulation might
periodically vary the intensity of the light source. For this to work the noise must not
depend on the excitation. A lock-in can reduce amplifier Johnson noise that is present
independent of the input, but not photodetector shot noise that turns on and off with
the light. Problem 15.3 looks at typical numbers for this kind of noise reduction.

mixer

w
t

low-pass filterband-pass filtermeasurement

oscillator

1/

Figure 15.7. A lock-in amplifier.

In a lock-in an oscillator generates a periodic excitation sin(ωt) that drives the mea-
surement, resulting in a signal A(t) sin(ωt) + η(t) that includes the desired response A(t)
along with unwanted noise η(t). Since multiplication in the time domain is equal to con-
volution in the frequency domain, the detected signal is convolved around the oscillator
(the positive-frequency components are shown in Figure 15.8). An immediate advantage
of this is that the subsequent amplification can happen at the oscillator’s frequency rather
than near DC, away from the amplifier’s 1/f noise. The front end also includes a band-
pass filter centered on the oscillator that is broad enough to include the bandwidth of
A(t), but that rejects the remaining out-of-band noise in η(t).

Next, the output from the filter is multiplied by the same oscillator signal to demodulate
it, generating sum and difference terms:

[A(t) sin(ωt) + η(t)] sin(ωt) = A(t) sin2(ωt) + η(t) sin(ωt)

=
1
2
A(t) cos(ωt− ωt)− 1

2
A(t) cos(ωt + ωt)

+ η(t) sin(ωt)

=
1
2
A(t)− 1

2
A(t) cos(2ωt) + η(t) sin(ωt) . (15.11)

This is called homodyne detection; if a different signal source is used in the mixer it
is hetereodyne detection. Heterodyne detection is used, for example, to down-convert
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Figure 15.8. Lock-in amplification in the frequency domain (not to scale).

a radio signal to an IF (Intermediate Frequency) stage for further amplification before
final demodulation.

The final step in a lock-in is to pass the demodulated output through a low-pass filter
to separate out the measurement component near DC from the modulated noise and sum
signals, leaving just A(t)/2. In the time domain, the low-pass filter response is found by
convolving the input with its impulse response, which performs a weighted average of
the signal

〈[A(t) sin(ωt) + η(t)] sin(ωt)〉 = 〈A(t) sin2(ωt)〉 + 〈η(t) sin(ωt)〉

≈ 1
2
A(t) . (15.12)

This assumes that the noise is uncorrelated with the oscillator; the actual value of their
overlap will depend on the duration over which the average is taken.

The lock-in has projected out the component of its input with the phase and frequency
of the excitation. The noise rejection will depend on the output filter time constant, which
can be quite long for a measurement near DC. It’s instructive to view the output filter
from before the mixer, where it appears to be a band-pass filter centered around the
oscillator. But, unlike a conventional band-pass filter, we can make this one as narrow
as we want by increasing the output filter time constant, and if the oscillator drifts the
effective band-pass filter will automatically track it. In theory the input band-pass filter
is not even needed at all, but in practice too much noise can lead to nonlinearities and
cross-talk in the input stage that do get detected as a signal.

If there is any delay in the measurement there will be a phase shift that turns A into a
complex quantity. To distintuish between changes in amplitude and phase, it’s necessary
to follow the input amplifier by two mixers and low-pass filters, one using sin(ωt) to find
the real component, and the other cos(ωt) for the imaginary component. This is called
quadrature detection, and the resulting values I and Q (for In-phase and Quadrature).
The analog multiplication can be performed by a Gilbert cell, based on varying the current
flowing through a differential amplifier [Gilbert, 1975]. The multiplier (or mixer) can
also be replaced by a switch toggling between the signal and its inverse. This is the same
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as demodulating with a square wave; although there will be some noise pickup on the
harmonics, it’s much easier to make a nearly-ideal switch than a multiplier.

If the signal is digitized, the detection algorithm can instead be implemented in soft-
ware in a digital signal processor. This provides algorithmic flexibility along with greater
demands for power, complexity, and cost than a comparable analog circuit, although a
periodic signal can be synchronously undersampled at less than its period as long as there
is good phase stability [Smith, 1999].

15.2.2 Phase Detection and Encoding

If a lock-in measures components I and Q, the phase angle of the signal is given by
tan−1(I/Q). While the phase can be determined this way, a Phase-Locked Loop (PLL)
is a handy cousin of the lock-in that eliminates the need for an inverse trigonometric
function and can be used as a signal source as well as a signal analyzer [Wolaver, 1991].
An example is shown in Figure 15.9, with a mixer and Voltage-Controlled Oscillator
(VCO) connected in a feedback loop around an active filter.
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F V
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phase detector               loop filter               voltage-controlled oscillator

Figure 15.9. A Phase-Locked Loop.

The multiplier is called a phase detector here. If Vin = cos(ωt + θin), and VVCO =
sin(ωt + θVCO), then if θin ≈ θVCO their product will be

2 sin(ωt + θVCO) cos(ωt + θin) = sin(θVCO − θin) + sin(2ωt + θVCO + θin)

≈ θVCO − θin (15.13)

(the sum signal is removed by the filter). The output is a DC value proportional to the
phase difference

VPD = KPD(θVCO − θin) (15.14)

with a coefficient KPD that can include gain from the multiplier. As with a lock-in, this
can also be implemented with a switch instead of a multiplier.

If the signal and VCO instead have a small frequency difference, then

2 sin [(ωin + δω)t] cos(ωint) = sin(δω t) + sin(2ωint + δω t)

≈ δω t (15.15)

the result is a slow ramp with a slope given by the frequency error.
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Next comes the loop filter. Balancing currents into the non-inverting node (Problem
15.1),

dVF

dt
= −RO

RI

dVPD

dt
− VPD

RIC
. (15.16)

This is followed by the VCO, which has an instantaneous frequency VVCO = cos(ωVCOt).
Since we want to compare this to the input, their difference defines the time-dependent
phase

sin(ωVCOt) = sin (ωint + θVCO(t)) . (15.17)

Since the frequency is the time derivative of the argument,

ωVCO =
dωVCOt

dt
= ωin +

dθVCO

dt
. (15.18)

The VCO puts out a frequency that is proportional to the input voltage, with a constant
offset

ωVCO = KVCOVF + ω0 . (15.19)

Therefore
dθVCO

dt
= KVCOVF + ω0 − ωin . (15.20)

Now if the input frequency and phase are constant, the derivative of equation (15.14)
will be

dVPD

dt
= KPD

dθVCO

dt
, (15.21)

so that
1

KPD

dVPD

dt
= KVCOVF + ω0 − ωin , (15.22)

or taking the second derivative,

d2VPD

dt2
= KPDKVCO

dVF

dt
. (15.23)

Plugging this into equation (15.16) gives

1
KPDKVCO

d2VPD

dt2
+
R2

R1

dVPD

dt
+

1
R1C

VPD = 0 . (15.24)

The phase detector output satisfies the equation of motion for a simple harmonic oscil-
lator. The mass is set by the gain, the damping by the resistance ratio, and the restoring
force depend on the feedback capacitance. These can be chosen to critically damp the
PLL so that it locks onto the signal as quickly as possible. Because it can track changes
in frequency as well as phase this is really a PFLL, but that doesn’t have quite the same
ring to it.

One of the most important applications of a PLL is in generating and recovering timing
clocks. Consider the digital variant shown in Figure 15.10. A reference oscillator at ωin

goes to a counter which divides the frequency down by a divisor N . This alone could
be used to synthesize other frequencies, but the resolution would be very poor for small
values of N , requiring a very high input frequency. But here it is compared in the phase
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Figure 15.10. A digital PLL frequency synthesizer.

detector to the VCO output divided down in a second counter by a ratio M . The phase
detector will move the VCO’s frequency until these are equal, so that ωin/N = ωout/M ,
or ωout = Mωin/N . Now the frequency is determined by the ratio of M/N , giving much
higher and more uniform frequency resolution for a given reference frequency.
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Figure 15.11. Modulation schemes.

On the recovery side, a PLL can lock the phase of a receiver onto a carrier sent by a
remote transmitter. Once they share a phase reference, it’s possible to use phase as well
as frequency and amplitude to store information. Some possible modulation schemes are
shown in Figure 15.11. The first, On–Off Keying (OOK), simply turns the carrier
amplitude on and off. This is the digital version of Amplitude Modulation (AM). It
works, but there’s no way to distinguish between the off state and interference that blocks
reception of the on state. Better is Binary Phase-Shift Keying (BPSK). Once the PLL
is locked, it’s possible to keep the carrier amplitude constant and switch just its sign. Now
the logical states are independent of the signal strength; BPSK receivers can intentionally
clip the input and use a digital PLL to eliminate the amplitude information. This provides
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much more reliable reception of weak and fluctuating signals. As with a lock-in amplifier,
it’s possible to add a second demodulation channel with the VCO output phase-shifted
by 90◦ to separately determine the I and Q components. Now Quadrature Phase-Shift
Keying (QPSK) can be done, encoding information in four states based on the signs
of the I and Q components. This send two bits instead of one per transmitted symbol
(baud), but it’s possible to do better still. The spacing of the states in the (I ,Q) plane need
only be as large as the expected channel noise. In Quadrature Amplitude Modulation
(QAM) the amplitude information is used to squeeze in many more symbols; a V.32
modem was able to send 9600 bits per second in a 2400 Hz phone channel by using
a constellation of 16 QAM states. By considering a string of symbols to be a vector in
a higher-dimensional space it’s possible to be even more efficient in arranging these.
The underlying question of how to best pack spheres in a high-dimensional space is
surprisingly deep [Conway & Sloane, 1993]. Finally, because the PLL can track changes
in frequency as well as phase, information can also be sent that way in Frequency-Shift
Keying (FSK). This can be less efficient in using available spectrum, and requires the
transmitter and receiver to be designed to operate over a range of frequencies, but the
analog version is familiar in FM (Frequency Modulation) radios.

15.2.3 Spread Spectrum

In a lock-in amplifier, or an AM radio link, the measurement or message is multiplied by a
narrowband carrier signal. Before demodulation the signal retains its original bandwidth,
now centered on the carrier (Figure 15.8). This means that the system is susceptible to
interference at that frequency. Any background noise (or even intentional jamming) that is
near to the carrier will be detected as a valid signal. Even worse, if many different messages
are transmitted at adjacent frequencies in a given band, the edges of their distributions will
overlap and lead to interference among them. These problems put a premium on reducing
the bandwidth of the transmitted signal, using very stable oscillators and narrow filters.
Spread-spectrum communications systems instead use as much bandwidth as possible
for each signal. Although this might appear to be a perverse response, it leads to a number
of significant benefits.

carrier

message

passbandbaseband
0 w

spreading signal

Figure 15.12. Spread-spectrum modulation.

A direct-sequence spread-spectrum system multiplies the original message by a broad-
band spreading signal that is generated by a pseudo-random noise source, one that appears
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to be random but is generated from a deterministic algorithm. This convolves the spectra
so that the message fills the bandwidth of the spreading signal, which can then be modu-
lated by another communications carrier to mix it up to the available transmission band
(the positive-frequency component is shown in Figure 15.12). A variant is frequency-
hopping spread spectrum, which uses the pseudo-random sequence to select the carrier
frequency. The signal before modulation is said to be in the baseband, and after modu-
lation it is in the passband. In the receiver, the high-frequency carrier is first removed
by demodulation, then the message is retrieved from the spreaded signal by using a
synchronized replica of the pseudo-random noise generator. We will henceforth ignore
the (relatively) straightforward steps of modulation and demodulation by the carrier and
consider just the spreading and de-spreading.

This is like a lock-in with a very noisy oscillator. The spreading process significantly
increases the information content in the transmitted message and thereby reduces the
overlap between the signal and interfering noise. For noise to be picked up in the receiver,
it must now match the exact sequence of the pseudo-random generator rather than just
a carrier’s frequency and phase. Anything else will be rejected in the detector, up to a
limit of how long we are willing to average the signal. This means that:

• Noise in the channel will be much less likely to be accepted as a valid signal.
• Different spreaded messages using the same bandwidth will interfere incoherently

and so contribute only a small broadband component to the noise floor of the link.
This kind of channel sharing, called Code Division Multiple Access (CDMA),
degrades with load more gracefully than the alternatives of TDMA (Time Divi-
sion Multiple Access, in which systems take turns using the channel), FDMA
(Frequency Division Multiple Access, assigning them to different frequencies),
and CSMA (Carrier Sense Multiple Access, where they take turns based on
listening for channel activity).

• The chance of accidental or intentional reception by an unintended receiver is
significantly reduced since without a synchronized replica of the spreading signal
the message will appear to be random noise. Note that a determined eavesdropper
can still decode this; for true security stronger cryptographic techniques must be
used.

• A jamming signal must operate over a much larger bandwidth in order to be
effective.

• Because there is energy everywhere in the spectrum, the peak power density is
reduced, often an important regulatory consideration.

• The resolution in time that the arrival of a message can be measured to is ap-
proximately equal to the inverse of its bandwidth because of the frequency–time
uncertainty, therefore increasing the bandwidth improves timing measurements.

For these reasons spread-spectrum links are more robust and make better use of the
available communications bandwidth than the alternatives we’ve considered, and hence
are increasingly common in new designs ranging from sensitive laboratory equipment to
communications modems to the GPS satellite positioning system. Their noise rejection is
measured by the coding gain, which is the ratio in decibels of the energy per bit required
to obtain a given Bit Error Rate (BER) with and without coding, for a fixed noise power
(Problem 15.4).
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Any spread-spectrum system must provide the transmitter and receiver with identical
synchronized copies of an ideal pseudo-random noise source. The earliest patent for an
implementation was granted during World War II to the actress Hedy Lamarr (Hedy
Markey) and the composer George Antheil (#2,292,387, Secret Communication Sys-
tem, 1942) based on storing the noise sequence in a piano-roll mechanism. For those
applications without ready access to a piano, a linear feedback shift register (LFSR)
can be used instead. An order N LFSR satisfies the recursion relation

xn =
N∑
i=1

aixn−i (mod 2) , (15.25)

shown in Figure 15.13. x and a are binary variables, and the mod 2 operator gives the
remainder after dividing by 2. The frequency at which the register gets updates is called
the chip rate.
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Figure 15.13. A linear feedback shift register.

The last bit is fed back to the first after passing through as many adders as there are
register stages, introducing a propagation delay that can be significant. This is corrected
in the equivalent Galois or modular configuration, shown in Figure 15.14. This puts the
adders between the register stages, so that the addition is accumulated into the bits as
they advance through it.
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Figure 15.14. The Galois configuration for a shift register.

The sequence of bits generated by an LFSR will repeat after the register returns to
the same state; the maximum possible sequence length is 2N − 1 (the all-0’s state is
not allowed because the system would get stuck there). Values for the taps ai that give
such maximal sequences can be found by asking that the z-transform of the recursion
relation not have smaller polynomial factors, in much the same way as prime numbers are
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found [Gershenfeld, 1999a]. The resulting sequences satisfy many tests of randomness
[Simon et al., 1994], including a power spectrum that is flat up to the recurrence time,
an autocorrelation function that equals 1 for a delay of 0 and the inverse of the sequence
length otherwise, and the same number of 0’s and 1’s (plus 1, because the all-0’s state
has been omitted). Table 15.1 gives the coefficients for maximal LFSRs for a number of
register lengths.

Table 15.1. For a maximal LFSR xn =
∑N
i=1 aixn−i (mod 2), lag i values for which

ai = 1 for the given order N (all of the other ai’s are 0).

N i N i N i

2 1, 2 13 1, 3, 4, 13 24 1, 2, 7, 24
3 1, 3 14 1, 6, 10, 14 25 3, 25
4 1, 4 15 1, 15 26 1, 2, 6, 26
5 2, 5 16 1, 3, 12, 16 27 1, 2, 5, 27
6 1, 6 17 3, 17 28 3, 28
7 3, 7 18 7, 18 29 2, 29
8 2, 3, 4, 8 19 1, 2, 5, 19 30 1, 2, 23, 30
9 4, 9 20 3, 20 31 3, 31
10 3, 10 21 2, 21 32 1, 2, 22, 32
11 2, 11 22 1, 22 33 13, 33
12 1, 4, 6, 12 23 5, 23 34 1, 2, 27, 34

The hard part in any spread-spectrum implementation is synchronizing the trans-
mitting and receiving shift registers. This comprises two parts: acquisition (setting the
registers to the correct bit sequence) and then tracking (following drifts between the
local clocks). The most straightforward, and widely-used, solution is the brute-force one
of incrementally shifting the receiving register and cross-correlating with the incoming
signal until an overlap is found. This slow process limits the speed of signal recovery.

An approximate alternative is to add the message into the transmitting LFSR

xn = mn +
M∑
i=1

aixn−i (15.26)

and then add this to the output of a receiving register fed with the same sequence

rn = xn +
M∑
i=1

aixn−i

= mn +
M∑
i=1

aixn−i +
M∑
i=1

aixn−i

= mn (15.27)

(remember that x + x = 0 mod 2). This self-synchronizing configuration automatically
recovers the message, but because the message enters into the register the noise is no
longer guaranteed to be optimal, and the receiver is more susceptible to errors and
artifacts.
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15.2.4 Digitization

After a signal is amplified, filtered, and demodulated, the final step is usually to digitize it
in an Analog-to-Digital Converter (ADC or A/D). These usually start with a sample-
and-hold circuit to store the voltage on a capacitor to keep it steady during the conversion,
followed by one of a number of strategies for turning the analog voltage into a digital
number. Flash A/Ds are the fastest of all, having as many analog comparators as possible
output states (e.g., 28=256 comparators for an 8-bit A/D). The conversion occurs in a
single step, but it is difficult to precisely trim that many comparators, and even harder
to scale this approach up to many bits. A successive approximation A/D uses a tree
of comparisons to simplify the circuit, at the expense of a slower conversion, by first
checking to see if the voltage is above or below the middle of the range, then testing
whether it is in the upper or lower quarter of that half, and so forth.

differential
amplifier

integrator comparator

1 bit DAC-

V

–V

Figure 15.15. A delta-sigma ADC.

In a dual-slope A/D, the input voltage is used to charge a capacitor, then the time
required to discharge it is measured. This eliminates the need for many precise com-
parators, and also can reject some noise becomes the result depends only on the average
charging rate. The number of bits is fixed by the timing resolution. A delta-sigma A/D
also converts the voltage into the time domain, but in a way that permits the resolution
to be dynamically determinted as needed (15.15). The input goes first to a differential
amplifier, then to an analog integrator. After that a comparator outputs a digital 1 or a
0 if the integrator output is positive or negative. It is configured as a Schmitt trigger
(Figure 15.16), which has some hysteresis in its response so that it doesn’t rattle around
as the input crosses the threshold voltage. This controls a switch between the voltage
rails that goes to the negative differential amplifier input.

Consider what happens if the input is grounded. The integrator will be charged up by
the supply voltage until it hits the comparator’s threshold to turn on, flipping the output
bit. Then, the switch will move to the opposite rail, driving the integrator down until
it hits the lower comparator threshold. The output bit will cycle between 1 and 0, with
a frequency set by the integrator time constant. If the input is non-zero, there will be
an asymmetry between the charging and discharging times, with the relative rates set by
where the input is in the voltage range. The fraction of time the resulting bit string is a 1
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V
on

V
off

output

Figure 15.16. A Schmitt trigger.

or a 0, which can be determined by a digital filter, gives the input voltage. The beauty of
this approach is that more resolution can be obtained simply by changing the coefficients
of the digital filter to have a longer time constant.

Something similar is possible with any A/D as long as it is noisy enough. The digitiza-
tion process introduces errors into the signal, which can be approximated by a Gaussian
noise source with a magnitude equal to the least significant bit. If in fact there is noise
of that magnitude then repeated readings can be used to improve the estimate below
the bit resolution. For this reason, high-performance converters intentionally add that
much noise to the signal before digitization. This process is called oversampling because
the conversions happen faster than what’s required according to the Nyquist sampling
theorem.

Similar devices operate in the opposite direction in a Digital-to-Analog Converter
(DAC or D/A). A resistor ladder can be used to convert a set of bits to a voltage, but as
with a flash A/D this requires precision trimming of the components and does not scale
to high resolution. Here too a delta-sigma approach lets temporal resolution be used to
obtain voltage resolution, using the same circuit as Figure 15.15 but now with digital logic.
The difference is taken between the input and the output, summed into an accumulator,
and used to trigger a comparator. This now controls a switch between the analog output
rails, producing a waveform with the correct average voltage. An analog filter smooths
this to produce the desired resolution; the frequency response is determined by the clock
speed for updating the loop. Because that’s much easier to increase than the precision
of component values, delta-sigma converters dominate for high-performance applications
such as digital audio.

15.3 C O D I N G

Machines, like people, make mistakes, can talk too much, and have secrets. This final
section takes a peek at some of the many techniques to reduce redundancy (compression),
anticipate errors (channel coding) and fix them (error correction), and protect information
(cryptography). These will all be phrased in terms of communicating digital messages
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through a channel, but the same ideas apply to anything that accepts inputs and provides
outputs, such as a processor or a memory.

15.3.1 Compression

Our first step is compression. If there is redundancy in a message so that something is
repeated over and over and over and over and over and over and over and over and over
and over and over and over and over and over and over and over, it’s more efficient to
eliminate the redundancy by saying (and over)15. This is a simple example of a run-length
code that replaces repeating blocks with a description of their length.

Better still is to recognize that common messages should require fewer bits to send than
uncommon ones. This is accomplished by Huffman coding. The idea is shown in Figure
15.17, which shows the relative probabilities of vowels in the King James Bible. If the
letters are simply encoded as bits then some bit strings will occur more often than others
because of the unequal letter probabilities. In an optimally encoded string, 1’s and 0’s
and all possible combinations are equally likely. Huffman coding starts by grouping the
symbols with the smallest probabilities to define a new effective symbol, and proceeding
in this manner trying to balance the probabilities in the branches. Reading back from the
right to decode a string, a variable number of bits is used depending on the frequency of
the letter. A run-length Huffman code is used in the CCITT fax standard.
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Figure 15.17. Huffman encoding of vowels.

The success of Huffman compression depends on how well the probabilities in the tree
can be matched up. For asymptotically long strings it will attain the Shannon entropy
bound, but for shorter strings it won’t. A more recent approach, arithmetic compression,
comes much closer to this limit (Figure 15.18). The unit interval is divided up into
segments with lengths corresponding to the relative probabilities of the symbols. A single
number will be used to encode a string. It is constrained to be in the interval associated
with its first symbol. Then that interval is subdivided in the same fractions to find the
subinterval fixed by the second symbol. That interval is divided again according to the
third symbol, and so forth. Now the whole Bible could by written by one number. That
alone is of course not the compression, because the number is a very long one. But the
compression comes in when the intervals are written as fixed-precision binary fractions
rather than infinite-precision real numbers. Then the average number of bits used per
symbol will reflect their relative probabilities, up to that precision.



15.3 Coding 259

U

0.07

I

0.16

O

0.20

A

0.23

E

0.34

0.00 0.07 0.23 0.43 0.66 1.00

O

U
0.1068 0.1388

0.1068 0.10904

Figure 15.18. Arithmetic encoding of IOU .

Arithmetic compression still requires advance knowledge of the source’s probabilities.
This may not be possible because of non-stationarity or unfamiliarity. Universal com-
pressors attempt to attain the Shannon bound for arbitrary sources by adaptively building
a descriptions of them. The Lempel–Ziv–Welch (LZW) scheme [Welch, 1984] is shown
in Figure 15.19; variants are used in most computer file compression utilities and mo-
dem compression standards. The encoder starts with a dictionary containing the possible
symbols, in this case 0 and 1. It then works through the string, adding new entries to the
dictionary as they are encountered, and transmitting the address of the known prefix to
the decoder which can follow the reverse algorithm to reconstruct both the dictionary and
the string. If there are N address bits used for dictionary addresses it’s possible to store
2N strings, which can be much longer than N . As the dictionary fills up, the encoder and
decoder need to share an algorithm for pruning it, such as throwing out the least-used
entry.
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Figure 15.19. Lempel-Ziv-Welch encoding of a periodic string.

So far we’ve been covering lossless compression which can be inverted to find the
input string. Lossy compression cannot. While this might appear to be a dereliction of
engineering duty, if the goal is to transmit a movie rather than a bank balance then all
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that matters is that it look the same. To see why this is needed, consider NTSC analog
video, which provides roughly 640×480 bits of screen resolution at 30 frames per second
[Pritchard & Gibson, 1980]. If we allow ourselves eight bits each for red, green, and blue
color values, sending an NTSC channel digitally requires

640 pixels× 480 pixels× 24
bits
pixel

× 30
frames

s
= 221×106 bits

s
. (15.28)

A fast network would be saturated by a standard that dates back to 1941. The MPEG
(Moving Picture Experts Group) standards reduce by a few orders of magnitude the bit
rate needed to deliver acceptable video [Sikora, 1997]. They accomplish this by taking ad-
vantage of a number of perceptual tricks, which is why lossy coding departs from rigorous
engineering design and becomes an art that depends on insight into the application.

The details of the fine structure in an image are usually not important; the exact
arrangement of the blades of grass in a field cannot be perceived. Vector quantization
takes advantage of this insight to expand a signal in basis vectors and then approximate
it by using nearby templates [Clarke, 1999]. And the ear will mask frequencies around
a strong signal, so these can be discarded [Schroeder et al., 1979]. MPEG compression
also does predictive coding to send just updates to what a model forecasts the signal will
do. This is only as effective as the model; the most sophisticated video coders build in
enough physics to be able to describe the objects in a scene rather than the pixel values
associated with a particular view of them [Bove, 1998].

15.3.2 Error Correction

Once a message is communicated as efficiently as possible, the next job is to make sure
that it is sent as reliably as necessary. This is done by undoing some of the compression,
carefully adding back enough redundancy so that errors can be detected and corrected.

The simplest error detection is to add up (mod 2) all of the bits in a data word to find
the parity and append this value to the string. The receiver can then use the parity bit
to catch any single bit error because it will change the parity. This prevents erroneous
data from being used, but does not remove the error. If each bit is sent three times, then
a majority vote can be taken, not only catching but correcting single-bit errors in the
triple. This unfortunately also triples the data rate. Majority voting really overcorrects: it
can repair as many errors as there are encoded bits, which may be far more than what’s
needed.

A block code corrects fewer bits with less overhead. In an (n, k) block code, k data
symbols are sent in a block of n coded symbols, introducing n − k extra ones for error
correction. For a Hamming code of order m, n = 2m − 1 and k = 2m − 1 −m. The
construction starts with the (2m − 1−m)× (2m − 1−m) generator matrix G, which
for m = 3 is

G = [PT I] =


0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

 , (15.29)

where I is the m ×m identity matrix, and P has as its columns all possible m-element
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vectors with more than one non-zero element. A data vector ~d with (2m − 1 − m)
components is associated with a (2m − 1)-element codeword ~c by

~c = GT ~d . (15.30)

This is received as ~r = ~c+~η, with possible errors ~η. The received vector is then multiplied
by the parity check matrix

H = [I P] =

 1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 (15.31)

to find the syndrome

~s = H ~r

= HGT ~d + H ~η

= [I P]
[

P
I

]
~d + H ~η

= P + P + H ~η

= H ~η . (15.32)

The last line follows because in binary arithmetic 1 + 1 = 0 + 0 = 0. Since each column
of the parity check matrix is unique, if there is a single bit error the offending element
of ~η can be read off and corrected. Errors of more than one bit will also be recognized,
but because the syndrome is no longer unique they can’t be corrected. This procedure
works because all of the codewords differ by at least three bits (their Hamming distance
is 3 or more), so that a vector within one bit can uniquely be identified.
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Figure 15.20. A convolutional coder, and the trellis that describes its output. The links are
labelled by data bit:code bits, with dashed lines for links associated with 0’s.

Errors don’t have to stick to blocks, and neither do coders. In a convolutional code
memory is introduced so that the decoding depends on the history of what’s received,
helping fix errors by taking advantage of information that is not adjacent in time. The
idea is shown in Figure 15.20. Data bits enter into a shift register, which is tapped and
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summed to obtain the code bits. This example has a rate of 1/2, turning each data bit
into two code bits. There is not a design theory analogous to that for maximal LFSRs
to find optimal tap sequences, but good values have been found experimentally [Larsen,
1973].

The action of a convolutional encoder can best be understood through the trellis
shown in Figure 15.20. There are four possible shift register states, each of which can be
followed by an input 0 or 1. All of the possible transitions at each time step are shown,
labelled by the code bits associated with them.

When the decoder receives a string of code bits it can determine what was transmitted
by finding the path through the trellis with the smallest Hamming distance from what
was received. Because of the correlation created by the encoding, this can depend on the
full history of the signal. Decoding might appear to be a daunting task: if there are N
time steps and M code words, there are NM sequences to check. But as the trellis makes
clear, when two sequences join at a node then it’s only necessary to keep track of the most
likely one. Given a received string, decoding can progress by a forward pass through the
trellis, evaluating the smallest error path arriving at each node, and then a reverse pass
reading back from the final node with the smallest final error. This is called the Viterbi
algorithm [Viterbi & Omura, 1979]. It drops the computational cost from NM to order
NM , quite a savings! Given that difference, it’s not surprising that this insight recurs
in probabilistic estimation [Gershenfeld, 1999a], and in statistical mechanics, where it
is possible to design spin systems that have as their ground state a decoded sequence
[Sourlas, 1989]. Problem 15.6 works through an example of Viterbi decoding.

15.3.3 Channel Coding

After compression and error correction comes an essential final step: channel coding. This
is where errors are prevented by modifying the message to satisfy a channel’s constraints.
For example, if too many identical digits are written in a row to a magnetic disk then the
read head will saturate in that direction, if transitions happen too infrequently then the
system clock will lose synchronization, if the average number of 1’s does not match the
average number of 0’s there will be a net magnetization of the readout, and if bit reversals
happen too quickly it will not be possible to follow them. This is a Run-Length Limited
(RLL) system.

0 0 0 01 1 1

Figure 15.21. A Manchester code.

A simple solution is to use a Manchester code, shown in Figure 15.21. This always
flips the output at the beginning of each interval, and then flips it again in the middle
for a 1. The logical bits are now represented by the timing of the transitions in the
channel bits, with at least one transition per bit guaranteed. This is easy to understand
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and implement, but has the very great disadvantage of doubling the rate of the code. It is
still used in applications for which the bit rate can vary significantly, such as credit card
readers.

Much more efficient use can be made of the medium by explicitly building in its
limits. Disk drives for many years used an RLL(2,7) code, which restricts the minimum
distance between bits to 2 and the maximum to 7 by encoding the data according to a
variable-length block lookup table (Table 15.2). Because of the importance of maximizing
storage density still more efficient codes have superseded this; the most general way to
understand them is through the language of symbolic dynamics, devising dynamical
systems that transform symbols subject to a set of constraints [Lind & Marcus, 1995].

Table 15.2. Encoding table for an RLL(2,7) code.

Data Code word

00 1000
01 0100
100 001000
101 100100
111 000100
1100 00001000
1101 00100100

15.3.4 Cryptography

The preceeding techniques establish a reliable channel through imperfect devices, but
this can be a bug rather than a feature if the receiver is not an intended one. Encoding
information so that access can be controlled is the domain of cryptography [Simmons,
1992]. The essential insight behind modern cryptosystems is that there can be an asym-
metry in the information required for encoding and decoding a message. In public key
cryptography [Diffie & Hellman, 1976; Merkle, 1978] someone who wants to receive a
secure transmission can openly publish a public key number that can be used by anyone
to encrypt a message, but a secret private key is required to decrypt it. This relies on
the existence of one-way functions which are easy to evaluate but very hard to invert.

The ubiquitous RSA scheme [Rivest et al., 1978] relies on the difficulty of factoring.
It starts by picking two large prime numbers p and q, with a product n = pq. Then two
other integers e and d are selected for which

ed = 1 + (p− 1)(q − 1)r (15.33)

for some integer r, i.e., d is the inverse of e mod (p − 1)(q − 1). This combination is
chosen because according to a version of Fermat’s Little Theorem due to Euler [Koblitz,
1994]

m(p−1)(q−1) = 1 (mod n) (15.34)

for integer m that are not divisible by n. The number m can be formed from the bits of
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a message to be sent, and then encrypted with n and the public key e by

E(m) = me (mod n) . (15.35)

This is easy to do, but hard to undo. But if the private key d is known, then it can be
decrypted by another modular exponentiation

D [E(m)] = D [me (mod n)]

= [me(mod n)]d (mod n)

= med (mod n)

= m1+(p−1)(q−1)r (mod n)

= m
[
m(p−1)(q−1)]r (mod n)

= m [1 (mod n)]r (mod n)

= m (mod n) . (15.36)

Anyone with access to e can encrypt m, but only the holders of d can read it.
The security of this scheme rests on the presumed difficulty of finding prime factors,

because if p and q could be found from n then equation (15.33) gives the secret key d.
The best-known factoring algorithm is the number field sieve [Lenstra & Lenstra, Jr.,
1993] which requires a number of steps on the order of O(e1.9(logN )1/3(log log(N ))2/3

) to factor
a number N . Because this is exponential in the number of digits in N , a linear increase
in the key length imposes an exponential increase in the effort to find the factors. It is
widely believed (but not proven) that it’s not possible to factor in less than exponential
time, unless you’re fortunate enough to have a quantum computer (Chapter 16). We’ll
also see that quantum mechanics offers a way to distribute the private keys, which can’t
go through a public channel.

Classical cryptography can also be implemented physically, with one-way functions
in coherent scattering [Pappu et al., 2002]. This can reduce cost and simplify form
factors as well as improve security; cryptography isn’t useful if it can’t be used because
of constraints introduced by conventional electronics.

For some applications the presence of secret information itself must be kept secret,
such as hidden IDs used to detect forgeries and copying. Steganography, the very old idea
of hiding one kind of data in another kind of media, is becoming increasingly important
as the range and value of new types of media and data proliferate [Johnson & Jajodia,
1998].

15.4 SENS ING

relax implicit assumptions, important consequences

15.4.1 Analog Logic

LNA, ADC, DSP
loss of channel information
digitize on code
An interesting alternative starts with the recognition that a PLL performs the desired
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acquisition and tracking for a periodic signal. This can be extended to pseudo-random
sequences by replacing the LFSR with an Analog Feedback Shift Register (AFSR),
which is a real-valued map

xn =
1
2

[
1− cos

(
π

N∑
i=1

aixn−i

)]
(15.37)

with the same taps ai as the corresponding LFSR. These two functions agree for digital
values, but the analog freedom of the AFSR lets it lock onto a pseudo-random sequence
coupled into it [Gershenfeld & Grinstein, 1995, Vigoda et al., 2006].
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15.6 Problems

(15.1) (a) Show that the circuits in Figures 15.1 and 15.2 differentiate, integrate, sum,
and difference.

(b) Design a non-inverting op-amp amplifier. Why are they used less commonly
than inverting ones?

(c) Design a transimpedance (voltage out proportional to current in) and a transcon-
ductance (current out proportional to voltage in) op-amp circuit.

(d) Derive equation (15.16).
(15.2) If an op-amp with a gain–bandwidth product of 10 MHz and an open-loop DC

gain of 100 dB is configured as an inverting amplifier, plot the magnitude and
phase of the gain as a function of frequency as Rout/Rin is varied.

(15.3) A lock-in has an oscillator frequency of 100 kHz, a bandpass filter Q of 50 (re-
member that the Q or quality factor is the ratio of the center frequency to the
width between the frequencies at which the power is reduced by a factor of 2),
an input detector that has a flat response up to 1 MHz, and an output filter time
constant of 1 s. For simplicity, assume that both filters are flat in their passbands
and have sharp cutoffs. Estimate the amount of noise reduction at each stage for
a signal corrupted by additive uncorrelated white noise.

(15.4) (a) For an order 4 maximal LFSR work out the bit sequence.
(b) If an LFSR has a chip rate of 1 GHz, how long must it be for the time between

repeats to be the age of the universe?
(c) Assuming a flat noise power spectrum, what is the coding gain if the entire

sequence is used to send one bit?
(15.5) What is the SNR due to quantization noise in an 8-bit A/D? 16-bit? How much

must the former be averaged to match the latter?
(15.6) The message 00 10 01 11 00 (c1, c2) was received from a noisy channel. If it was

sent by the convolutional encoder in Figure 15.20, what data were transmitted?
(15.7) This problem is harder than the others.

(a) Generate and plot a periodically sampled time series {tj} of N points for the
sum of two sine waves at 697 and 1209 Hz, which is the DTMF tone for the
number 1 key.
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(b) Calculate and plot the Discrete Cosine Transform (DCT) coefficients {fi}
for these data, defined by their multiplication by the matrix fi =

∑N−1
j=0 Dijtj ,

where

Dij =


√

1
N

(i = 0)√
2
N

cos
(
π(2j+1)i

2N

)
(1 ≤ i ≤ N − 1)

(15.38)

(c) Plot the inverse transform of the {fi} by multiplying them by the inverse of
the DCT matrix (which is equal to its transpose) and verify that it matches
the time series.

(d) Randomly sample and plot a subset of M points {t′k} of the {tj}; you’ll later
investigate the dependence on the sample size.

(e) Starting with a random guess for the DCT coefficients {f ′i}, use gradient
descent to minimize the error at the sample points

min
{f ′
i
}

M−1∑
k=0

(
t′k −

N−1∑
i=0

Dikf
′
i

)2

(15.39)

and plot the resulting estimated coefficients.
(f) The preceding minimization is under-constrained; it becames well-posed if a

norm of the DCT coefficients is minized subject to a constraint of agreeing with
the sampled points. One of the simplest (but not best [Gershenfeld, 1999a])
ways to do this is by adding a penalty term to the minimization. Repeat the
gradient descent minimization using the L2 norm:

min
{f ′
i
}

M−1∑
k=0

(
t′k −

N−1∑
i=0

Dikf
′
i

)2

+
N−1∑
i=0

f ′2i (15.40)

and plot the resulting estimated coefficients.
(g) Repeat the gradient descent minimization using the L1 norm:

min
{f ′
i
}

M−1∑
k=0

(
t′k −

N−1∑
i=0

Dikf
′
i

)2

+
N−1∑
i=0

|f ′i | (15.41)

plot the resulting estimated coefficients, compare to the L2 norm estimate, and
compare the dependence of the results on M to the Nyquist sampling limit of
twice the highest frequency.


