
Intro to Git
MAS.863 / 4.140 / 6.943



Agenda

● General information
● What you need for this class
● Additional techniques



General information



Best practices for this class

Important notes:

● Do not commit giant files! (if they can be reasonably shrunk)
○ Resize images before committing.
○ Compress and resize raw video before committing.
○ Committed files are "forever" - and everyone has to download them!

● Avoid the built-in GitLab "edit" button (it clutters history).

A challenge to you:

● Make your commit messages meaningful!
○ Imagine looking through them 6 mo from now



What?

Git: a revision control system.

● Complete project history!
● Powerful branching and merging capability
● Synchronizes with remote repositories on demand



Why Git?

● Keep a detailed chronological record of what you did and why
● Easily switch between independent feature contexts
● Collaborate on source code with others in parallel
● Resolve conflicts that arise during simultaneous development



How it all works

Repositories contain commits organized into branches.

master

cool-feature

best-feature



How it all works

A commit contains a set of changes as well as a commit message explaining 
what was done and why.

Commit f2876231

Created cool feature

The feature was 
needed because...

Commit Message

... stuff ...

... stuff ...
+ my awesome
+ additions
... stuff ...
... stuff ...

a.file

... stuff ...
- obsolete stuff
+ better stuff
... stuff ...

b.file

+ file that
+ didn't exist
+ but does now
+ and is awesome

c.file



What you need for this class



Creating a new repository

git init

Creates a blank repository in your working directory.



Cloning an existing repository

git clone url-of-repository

(Set up SSH keys in GitLab first! Then use the SSH clone URL.)



Creating and adding SSH keys

SSH keys identify your computer.

● ssh-keygen -t rsa -b 4096
creates a new key.

● cat ~/.ssh/id_rsa.pub
prints your public key to the terminal output.

● Copy your public key into GitLab (Settings -> SSH Keys)



Creating a branch

By default a Git repository contains one branch called "master".

● git branch my-awesome-branch
creates a new branch called "my-awesome-branch"

● git checkout my-awesome-branch
switches to that branch



Committing your work

First do some work. Then:

● git add file1 [file2] [...] 
stages changes in file1, file2, etc. for commit

● git reset HEAD file1
unstages all changes in file1

● git status
reviews what files you have and haven't staged

● git diff --staged
reviews exactly what changes you've staged

● git diff
and what changes (to existing files only) you haven't



Committing your work

● git commit 
commits those staged changes to the current branch
after asking for a commit message

A good commit message contains:

● a short (one line) summary of what you did
● a long (~paragraphs) description of what you did, how, and why

○ what problem did it solve?
○ what techniques were used?
○ what pitfalls are to be avoided?



Reviewing history

You want to understand what's been done in the past.

● git log
shows commit messages for the current branch

● or use GitLab



Updating a commit

You realize you want to update a commit (either message or content),
and you haven't uploaded it yet.

● Stage any file changes you want to include.
● git commit --amend

will ask for edits to the commit message 
and bring in any staged changes.

This creates a new commit with the same parent,
and makes the current branch point there.



Uploading your work

Repositories can be linked to "remotes". Cloned repos have a remote named 
"origin".

● git push origin name-of-branch
attempts to update the default remote with your work on the named 
branch



Keeping track of remotes

You want to bring your work into master branch because that's what's 
deployed to the website. First:

● git checkout master
● git pull

merges in the remote changes to your local master branch

master

my-awesome-branch



Integrating your work

● git merge my-awesome-branch
merges in the work from my-awesome-branch into current branch

● fix any conflicts when Git complains
○ edit files by hand
○ git commit

● git push origin master
● if this doesn't work, git pull and try again

master

my-awesome-branch



Best practices for this class

Important notes:

● Do not commit giant files! (if they can be reasonably shrunk)
○ Resize images before committing.
○ Compress and resize raw video before committing.
○ Committed files are "forever" - and everyone has to download them!

● Avoid the built-in GitLab "edit" button (it clutters history).

A challenge to you:

● Make your commit messages meaningful!
○ Imagine looking through them 6 mo from now



Other GitLab tools

● Issue tracker: track tasks, communicate within sections.
● Kanban board: visualize issues within a workflow.
● Labels: categorize issues by type, severity, importance, etc.
● Milestones: group issues into progress checkpoints.



Additional techniques



Rebasing

You're working on a branch that you haven't pushed yet and master has 
updated in the meantime. 

You want to bring in the new changes from master and keep working on your 
feature branch.

master

cool-feature



Rebasing

git checkout cool-feature
git rebase master

moves cool-feature to start from the most recent commit in master.

master

cool-feature



Checking out a specific commit

Sometimes you need to see the repository at a particular point in time.

● git checkout <commit-hash>
will check out that specific state.

● You can do whatever you like!
○ look around, make changes, even make commits...

● git checkout -b <new-branch-name>
will save any new commits you made on top to a new branch.

master



Cherry picking from a different branch

While working on a feature branch, or looking at someone else's work, you 
realize you really want to bring in a specific commit from a different branch.

1 2 3 4

a b c d

my-awesome-branch

other-branch



Cherry picking from a different branch

git cherry-pick <hash-of-commit-c>
replays commit c on top of your current branch.

1 2 3 4

a b c d

my-awesome-branch

other-branch

c'



Recovering "lost" commits

There's no such thing as a "lost" commit!
If you commit your work, it lives in the repo "forever".

● git reflog
lists every commit you made recently (even if e.g. its branch is gone)


