
16 Density Estimation

We’ve learned more and more about how to describe and fit functions, but the decision

to fit a function can itself be unduly restrictive. Instead of assuming a noise model for the

data (such as Gaussianity), why not go ahead and deduce the underlying probability dis-

tribution from which the data were drawn? Given the distribution (or density) any other

quantity of interest, such as a conditional forecast of a new observation, can be derived.

Perhaps because this is such an ambitious goal it is surprisingly poorly covered in the

literature and in a typical education, but in fact it is not only possible but extremely useful.

This chapter will cover density estimation at three levels of generality and complexity.

First will be methods based on binning the data that are easy to implement but that can

require impractical amounts of data. This is solved by casting density estimation as a

problem in functional approximation, but that approach can have trouble representing all

of the things that a density can do. The final algorithms are based on clustering, merging

the desirable features of the preceeding ones while avoiding the attendant liabilities.

16.1 HISTOGRAMMING, SORTING, AND TREES

Given a set of measurements {xn}
N
n=1 that were drawn from an unknown distribution

p(x), the simplest way to model the density is by histogramming x. If Ni is the number

of observations between xi and xi+1, then the probability p(xi) to see a new point in the

bin between xi and xi+1 is approximately Ni/N (by the Law of Large Numbers).

This idea is simple but not very useful. The first problem is the amount of storage

required. Let’s say that we’re looking at a 15-dimensional data set sampled at a 16-bit

resolution. Binning it would require an array of 216×15 ≈ 1072 elements, more elements

than there are atoms in the universe! But this is an unreasonable approach because most

of those bins would be empty. The storage requirement becomes feasible if only occupied

bins are allocated. This might appear to be circular reasoning, but in fact can be done

quite simply.

The trick is to perform a lexicographic sort. The digits of each vector are appended

to make one long number, in the preceeding example 15 × 16 = 240 bits long. Then
the one-dimensional string of numbers is sorted, requiring O(N logN ) operations. A
final pass through the sorted numbers counts the number of times each number appears,

giving the occupancy of the multi-dimensional bin uniquely indexed by that number.

Since the resolution is known in advance this can further be reduced to a linear time

algorithm. Sorting takes O(N logN ) when the primitive operation is a comparison of
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Figure 16.1. Multi-dimensional binning on a binary tree.

two elements, but it can be done in linear time at a fixed resolution by sorting on a tree.

This is shown schematically in Figure 16.1. Each bit of the appended number is used

to decide to branch right or left in the tree. If a node already exists then the count of

points passing through it is incremented by one, and if the node does not exist then it

is created. Descending through the tree takes a time proportional to the number of bits,

and hence the dimension, and the total running time is proportional to the number of

points. The storage depends on the amount of space the data set occupies (an idea that

will be revisited in Chapter 20 to characterize a time series).

Sorting on a tree makes it tractable to accumulate a multi-dimensional histogram but

it leaves another problem: the number of points in each bin is variable. Assuming Poisson

counting errors, this means that the relative uncertainty of the count of each bin ranges

from 100% for a bin with a single point in it to a small fraction for a bin with a large

occupancy. Many operations (such as taking a logarithm in calculating an entropy) will

magnify the influence of the large errors associated with the low probability bins.

The solution to this problem is to use bins that have a fixed occupancy rather than a

fixed size. These can be constructed by using a k-D tree [Preparata & Shamos, 1985],

shown for 2D in Figure 16.2. A vertical cut is initially chosen at a location x11 that has half
of the data on the left and half on the right. Then each of these halves is cut horizontally

at y11 and y
1
2 to leave half of the data on top and half on bottom. These four bins are next

cut horizontally at x21−4, and so forth. In a higher-dimensional space the cuts cycle over
the directions of the axes. By construction each bin has the same number of points, but

the volume of the bin varies. Since the probability is estimated by the number of points

divided by the volume, instead of varying the number of points for a given volume as

was done before we can divide the fixed number of points by the varying volumes. This

gives a density estimate with constant error per bin.

Building a k-D tree is more work than fixed-mass binning on a tree, particularly

if new points need to be added later (which can require moving many of the k-D tree

partitions). There is a simple trick that approximates fixed-volume binning while retaining

the convenience of a linear-time tree. The idea is to interleave the bits of each coordinate of

the point to be sorted rather than appending them, so that each succeeding bit is associated

with a different direction. Then the path that the sorted sequence of numbers takes

through the space is a fractal curve [Mandelbrot, 1983], shown in 2D in Figure 16.3. This
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Figure 16.3. Fractal binning in 2D.

has the property that the average distance between two points in the space is proportional

to the linear distance along the curve connecting them. Therefore the difference between

the indices of two bins estimates the volume that covers them.

Even histogramming with constant error per bin still has a serious problem. Let’s say

that we’re modestly looking at three-dimensional data sampled at an 8-bit resolution. If

it is random with a uniform probability distribution and is histogrammed inM bins then

the probability of each bin will be roughly 1/M . The entropy of this distribution is

H = −
M∑

i=1

pi log2 pi

= log2M

⇒ 2H =M . (16.1)
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But we know that the entropy is H = 8× 3 = 24 bits, therefore there must be 224 ≈ 107

occupied bins or the entropy will be underestimated. Since the smallest possible data set

would have one point per bin this means that at least 10 million points must be used, an

unrealistic amount in most experimental settings.

The real problem is that histogramming has no notion of neighborhood. Two adjacent

bins could represent different letters in an alphabet just as well as nearby parts of a space,

ignoring the strong constraint that neighboring points might be expected to behave simi-

larly. What’s needed is some kind of functional approximation that can make predictions

about the density in locations where points haven’t been observed.

16.2 FITTING DENSITIES

Let’s say that we’re given a set of data points {xn}
N
n=1 and want to infer the density

p(x) from which they were drawn. If we’re willing to add some kind of prior belief,

for example that nearby points behave similarly, then we can hope to find a functional

representation for p(x). This must of course be normalized to be a valid density, and a
possible further constraint is compact support: the density is restricted to be nonzero on

a bounded set. In this section we’ll assume that the density vanishes outside the interval

[0,1]; the generalization is straightforward.

One way to relate this problem to what we’ve already studied is to introduce the

cumulative distribution

P (x) ≡

∫ x

0

p(x) dx . (16.2)

If we could find the cumulative distribution then the density follows by differentiation,

p(x) =
dP

dx
. (16.3)

There is in fact an easy way to find a starting guess for P (x): sort the data set. P (xi) is

defined to be the fraction of points below xi, therefore if i is the index of where point
xi appears in the sorted set, then

yi ≡
i

N + 1
≈ P (xi) . (16.4)

The denominator is taken to be N +1 instead of N because the normalization constraint

is effectively an extra point P (1) = 1.
To estimate the error, recognize that P (xi) is the probability to draw a new point below

xi, and that NP (xi) is the expected number of such points in a data set of N points.

If we assume Gaussian errors then the variance around this mean is NP (xi)[1− P (xi)]

[Gershenfeld, 2000]. Since yi = i/(N + 1), the standard deviation in yi is the standard
deviation in the number of points below it, i, divided by N + 1,

σi =
1

N + 1
{NP (xi)[1− P (xi)]}

1/2

=
1

N + 1

[

N
i

N + 1

(

1−
i

N + 1

)]1/2

. (16.5)

This properly vanishes at the boundaries where we know that P (0) = 0 and P (1) = 1.
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We can now fit a function to the data set {xi, yi, σi}. A convenient parameterization
is

P (x) = x +
M∑

m=1

am sin(mπx)

⇒ p(x) = 1 +
M∑

m=1

ammπ cos(mπx) , (16.6)

which enforces the boundary conditions P (0) = 0 and P (1) = 1 regardless of the choice
of coefficients (this representation also imposes the constraint that dp/dx = 0 at x = 0
and 1, which may or may not be appropriate).

One way to impose the prior that nearby points behave similarly is to use the integral

square curvature of P (x) as a regularizer (Section 14.7), which seeks to minimize the
quantity

I0 =

∫ 1

0

(
d2P

dx2

)2

dx . (16.7)

The model mismatch is given by

I1 =
1

N

N∑

i=1

[
P (xi)− yi

σi

]2

. (16.8)

The expected value of I1 is 1; we don’t want to minimize it because passing exactly
through the data is a very unlikely event given the uncertainty. Therefore we want to

impose this constraint by introducing a Lagrange multiplier in a variational sum

I = I0 + λI1 . (16.9)

Solving

∂I

∂am
= 0 (16.10)

for all m gives the set of coefficients {am} as a function of λ, and then given the
coefficients we can do a one-dimensional search to find the value of λ that results in
I1 = 1.

Plugging in the expansion (16.5) and doing the derivatives and integrals shows that if

the matrix A is defined by

Alm = 2π
4l2m2







1

2(l2 −m2)π
{(l +m) sin[(l −m)π]

−(l −m) sin[(l +m)π]} (l 6=m) ,
1
2
− sin(2mπ)/(4mπ) (l = m)

(16.11)

the matrix B by

Blm =
2

N

N∑

i=1

sin(lπxi) sin(mπxi)/σ
2
i , (16.12)
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Figure 16.4. Cumulative histogram (solid) and regularized fit (dashed), for the points shown

along the axis drawn from a Gaussian distribution. Differentiating gives the resulting density

estimate.

and the vector ~c by

cm =
2

N

N∑

i=1

(yi − xi) sin(mπxi)/σ
2
i , (16.13)

then the vector of expansion coefficients ~a = (a1, . . . , aM ) is given by

~a = λ(A + λB)−1 · ~c . (16.14)

An example is shown in Figure 16.4. Fifty points were drawn from a Gaussian distri-

bution and the cumulative density was fit using 50 basis functions. Even though there are

as many coefficients as data points, the regularization insures that the resulting density

does not overfit the data. This figure also demonstrates that the presence of the regular-

izer biases the estimate of the variance upwards, because the curvature is minimized if

the fitted curve starts above the cumulative histogram and ends up below it.

16.3 MIXTURE DENSITY ESTIMATION AND

EXPECTATION -MAXIMIZATION

Fitting a function lets us generalize our density estimate away from measured points,

but it unfortunately does not handle many other kinds of generalization very well. The

first problem is that it can be hard to express local beliefs with a global prior. For
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Figure 16.5. The problem with global regularization. A smoothness prior (dashed line) misses

the discontinuty in the data (solid line); a maximum entropy prior (dotted) misses the smooth-

ness.

example, if a smooth curve has some discontinuities, then a smoothness prior will round

out the discontinuities, and a maximum entropy prior will fit the discontinuity but miss

the smoothness (Figure 16.5). What’s needed is a way to express a statement like “the

density is smooth everywhere, except for where it isn’t.”

Another problem is with the kinds of functions that need to be represented. Consider

points distributed on a low-dimensional surface in a high-dimensional space. Transverse

to the surface the distribution is very narrow, something that is hard to expand with

trigonometric or polynomial basis functions.

These problems with capturing local behavior suggest that density estimation should

be done using local rather than global functions. Kernel density estimation [Silverman,

1986] does this by placing some kind of smooth bump, such as a Gaussian, on each

data point. An obvious disadvantage of this approach is that the resulting model requires

retaining all of the data. A better approach is to find interesting places to put a smaller

number of local functions that can model larger neighborhoods. This is done by mixture

models [McLachlan & Basford, 1988], which are closely connected to the problem of

splitting up a data set by clustering, and are an example of unsupervised learning.

Unlike function fitting with a known target, the algorithm must learn for itself where the

interesting places in the data set are.

In D dimensions a mixture model can be written by factoring the density over multi-

variate Gaussians

p(~x) =
M∑

m=1

p(~x, cm)

=

M∑

m=1

p(~x|cm) p(cm)

=

M∑

m=1

|C−1
m |1/2

(2π)D/2
e−(~x−~µm)

T ·C−1

M
·(~x−~µm)/2 p(cm) , (16.15)

where |·|1/2 is the square root of the determinant, and cm refers to themth Gaussian with
mean ~µm and covariance matrix Cm. The challenge of course is to find these parameters.

If we had a single Gaussian, the mean value ~µ could be estimated simply by averaging
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the data,

~µ =

∫ ∞

−∞

~x p(~x) d~x

≈
1

N

N∑

n=1

~xn . (16.16)

The second line follows because an integral over a density can be approximated by a sum

over variables drawn from the density; we don’t know the density but by definition it is

the one our data set was taken from. This idea can be extended to more Gaussians by

recognizing that themth mean is the integral with respect to the conditional distribution,

~µm =

∫

~x p(~x|cm) ~dx

=

∫

~x
p(cm|~x)

p(cm)
p(~x) d~x

≈
1

Np(cm)

N∑

n=1

~xn p(cm|~xn) . (16.17)

Similarly, the covariance matrix could be found from

Cm ≈
1

Np(cm)

N∑

n=1

(~xn − ~µm)(~xn − ~µm)
T p(cm|xn) , (16.18)

and the expansion weights by

p(cm) =

∫ ∞

−∞

p(~x, cm) d~x

=

∫ ∞

−∞

p(cm|~x) p(~x) d~x

≈
1

N

N∑

n=1

p(cm|~xn) . (16.19)

But how do we find the posterior probability p(cm|~x) used in these sums? By definition
it is

p(cm|~x) =
p(~x, cm)

p(~x)

=
p(~x|cm) p(cm)

∑M
m=1 p(~x|cm) p(cm)

, (16.20)

which we can calculate using the definition (equation 16.15). This might appear to be

circular reasoning, and it is! The probabilities of the points can be calculated if we know

the parameters of the distributions (means, variances, weights), and the parameters can

be found if we know the probabilities. Since we start knowing neither, we can start

with a random guess for the parameters and go back and forth, iteratively updating the

probabilities and then the parameters. Calculating an expected distribution given param-

eters, then finding the most likely parameters given a distribution, is called Expectation-
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Maximization (EM), and it converges to the maximum likelihood distribution starting

from the initial guess [Dempster et al., 1977].

To see where this magical property comes from let’s take the log-likelihood L of the
data set (the log of the product of the probabilities to see each point) and differentiate

with respect to the mean of the mth Gaussian:

∇~µm
L = ∇~µm

log

N∏

n=1

p(~xn)

=

N∑

n=1

∇~µm
log p(~xn)

=

N∑

n=1

1

p(~xn)
∇~µm

p(~xn)

=

N∑

n=1

1

p(~xn)
p(~xn, cm)C

−1
m · (~xn − ~µm)

=

N∑

n=1

p(cm|~xn)C
−1
m · ~xn −

N∑

n=1

p(cm|~xn)C
−1
m · ~µm

= Np(cm)C
−1
m ·

[

1

Np(cm)

N∑

n=1

~xn p(cm|~xn)− ~µm

]

. (16.21)

Writing the change in the mean after one EM iteration as δ~µm and recognizing that the

term on the left in the bracket is the update rule for the mean, we see that

δ~µm =
Cm

Np(cm)
· ∇~µm

L . (16.22)

Now look back at Section 12.4, where we wrote a gradient descent update step in terms

of the gradient of a cost function suitably scaled. In one EM update the mean moves in

the direction of the gradient of the log-likelihood, scaled by the Gaussian’s covariance

matrix divided by the weight. The weight is a positive number, and the covariance matrix

is positive definite (it has positive eigenvalues [Strang, 1986]), therefore the result is to

increase the likelihood. The changes in the mean stop at the maximum when the gradient

vanishes. Similar equations apply to the variances and weights [Lei & Jordan, 1996].

This is as close as data analysis algorithms come to a free lunch. We’re maximizing

a quantity of interest (the log-likelihood) merely by repeated function evaluations. The

secret is in equation (16.20). The numerator measures how strongly one Gaussian predicts

a point, and the denominator measures how strongly all the Gaussians predict the point.

The ratio gives the fraction of the point to be associated with each Gaussian. Each point

has one unit of explanatory power, and it gives it out based on how well it is predicted. As

a Gaussian begins to have a high probability at a point, that point effectively disappears

from the other Gaussians. The Gaussians therefore start exploring the data set in parallel,

“eating” points that they explain well and forcing the other Gaussians towards ones they

don’t. The interaction among the Gaussians happens in the denominator of the posterior

term, collectively performing a high-dimensional search.

The EM cycle finds the local maximum of the likelihood that can be reached from
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Figure 16.6. Mixture density estimation with Gaussians for data uniformly distributed

between 0 and 1.

the starting condition, but that usually is not a significant limitation because there are so

many equivalent arrangements that are equally good. The Gaussians can for example be

started with random means and variances large enough to “feel” the entire data set. If

local maxima are a problem, the techniques of the last chapter can be used to climb out

of them.

16.4 CLUSTER -WEIGHTED MODELING

As appealing as mixture density estimation is, there is still a final problem. Figure 16.6

shows the result of doing EM with a mixture of Gaussians on random data uniformly

distributed over the interval [0, 1]. The individual distributions are shown as dashed lines,
and the sum by a solid line. The correct answer is a constant, but because that is hard

to represent in this basis we get a very bumpy distribution that depends on the precise

details of how the Gaussians overlap. In gaining locality we’ve lost the ability to model

simple functional dependence.

The problem is that a Gaussian captures only proximity; anything nontrivial must come

from the overlap of multiple Gaussians. A better alternative is to base the expansion of a

density around models that can locally describe more complex behavior. This powerful

idea has re-emerged in many flavors under many names, including Bayesian networks

[Buntine, 1994],mixtures of experts [Jordan & Jacobs, 1994], and gated experts [Weigend

et al., 1995]. The version that we will cover, cluster-weighted modeling [Gershenfeld
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et al., 1999], is just general enough to be able to describe many situations, but not so

general that it presents difficult architectural decisions.

The goal now is to capture the functional dependence in a system as part of a density

estimate. Let’s start with a set of N observations {yn, ~xn}
N
n=1, where the ~xn are known

inputs and the yn are measured outputs. y might be the exchange rate between the dollar
and the mark, and ~x a group of currency indicators. Or y could be a future value of a
signal and ~x a vector of past lagged values. For simplicity we’ll take y to be a scalar, but
the generalization to vector ~y is straightforward.
Given the joint density p(y, ~x) we could find any derived quantity of interest, such

as a conditional forecast 〈y|~x〉. We’ll proceed by expanding the density again, but now
in terms of explanatory clusters that contain three terms: a weight p(cm), a domain of
influence in the input space p(~x|cm), and a dependence in the output space p(y|~x, cm):

p(y, ~x) =
M∑

m=1

p(y, ~x, cm)

=

M∑

m=1

p(y, ~x|cm) p(cm)

=

M∑

m=1

p(y|~x, cm) p(~x|cm) p(cm) . (16.23)

These terms are shown in Figure 16.7. As before, p(cm) is a number that measures the
fraction of the data set explained by the cluster. The input term could be taken to be a

D-dimensional separable Gaussian,

p(~x|cm) =
D∏

d=1

1
√

2πσ2m,d

e−(xd−µm,d)
2/2σ2m,d , (16.24)

or one using the full covariance matrix,

p(~x|cm) =
|C−1

m |1/2

(2π)D/2
e−(~x−~µm)

T ·C−1
m ·(~x−~µm)/2 . (16.25)
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Separable Gaussians require storage and computation linear in the dimension of the

space while nonseparable ones require quadratic storage and a matrix inverse at each

step. Conversely, using the covariance matrix lets one cluster capture a linear relation-

ship that would require many separable clusters to describe. Therefore covariance clus-

ters are preferred in low-dimensional spaces, but cannot be used in high-dimensional

spaces.

The output term will also be taken to be a Gaussian, but with a new twist:

p(y|~x, cm) =
1

√

2πσ2m,y

e−[y−f (~x,~βm)]
2/2σ2m,y . (16.26)

The mean of the Gaussian is now a function f that depends on ~x and a set of parameters
~βm. The reason for this can be seen by calculating the conditional forecast

〈y|~x〉 =

∫

y p(y|~x) dy

=

∫

y
p(y, ~x)

p(~x)
dy

=

∑M
m=1

∫
y p(y|~x, cm) dy p(~x|cm) p(cm)
∑M

m=1 p(~x|cm) p(cm)

=

∑M
m=1 f (~x,

~βm) p(~x|cm) p(cm)
∑M

m=1 p(~x|cm) p(cm)
. (16.27)

We see that in the forecast the Gaussians are used to control the interpolation among

the local functions, rather than directly serving as the basis for functional approximation.

This means that f can be chosen to reflect a prior belief on the local relationship between
~x and y, for example locally linear, and even one cluster is capable of modeling this
behavior. Using locally linear models says nothing about the global smoothness because

there is no constraint that the clusters need to be near each other, so this architecture

can handle the combination of smoothness and discontinuity posed in Figure 16.5.

Equation (16.27) looks like a kind of network model, but it is a derived property of a

more general density estimate rather than an assumed form. We can also predict other

quantities of interest such as the error in our forecast of y,

〈σ2y|~x〉 =

∫

(y − 〈y|~x〉)2 p(y|~x) dy

=

∫

(y2 − 〈y|~x〉2) p(y|~x) dy

=

∑M
m=1[σ

2
m,y + f (~x, ~βm)

2] p(~x|cm) p(cm)
∑M

m=1 p(~x|cm) p(cm)
− 〈y|~x〉2. (16.28)

Note that the use of Gaussian clusters does not assume a Gaussian error model; there

can be multiple output clusters associated with one input value to capture multimodal or

other kinds of non-Gaussian distributions.

The estimation of the parameters will follow the EM algorithm we used in the last
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section. From the forward probabilities we can calculate the posteriors

p(cm|y, ~x) =
p(y, ~x, cm)

p(y, ~x)

=
p(y|~x, cm) p(~x|cm) p(cm)

∑M
m=1 p(y, ~x, cm)

=
p(y|~x, cm) p(~x|cm) p(cm)

∑M
m=1 p(y|~x, cm) p(~x|cm) p(cm)

(16.29)

which are used to update the cluster weights

p(cm) =

∫

p(y, ~x, cm) dy d~x

=

∫

p(cm|y, ~x) p(y, ~x) dy d~x

≈
1

N

N∑

n=1

p(cm|yn, ~xn) . (16.30)

A similar calculation is used to find the new means,

~µnew
m =

∫

~x p(~x|cm) d~x

=

∫

~x p(y, ~x|cm) dy d~x

=

∫

~x
p(cm|y, ~x)

p(cm)
p(y, ~x) dy d~x

≈
1

N p(cm)

N∑

n=1

~xn p(cm|yn, ~xn)

=

∑N
n=1 ~xn p(cm|yn, ~xn)
∑N

n=1 p(cm|yn, ~xn)

≡ 〈~x〉m (16.31)

(where the last line defines the cluster-weighted expectation value). The second line

introduces y as a variable that is immediately integrated over, an apparently meaningless
step that in fact is essential. Because we are using the stochastic sampling trick to evaluate

the integrals and guide the cluster updates, this permits the clusters to respond to both

where data are in the input space and how well their models work in the output space. A

cluster won’t move to explain nearby data if they are better explained by another cluster’s

model, and if two clusters’ models work equally well then they will separate to better

explain where the data are.

The cluster-weighted expectations are also used to update the variances

σ2,newm,d = 〈(xd − µm,d)
2〉m (16.32)

or covariances

[Cm]
new
ij = 〈(xi − µi)(xj − µj)〉m . (16.33)
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The model parameters are found by choosing the values that maximize the cluster-

weighted log-likelihood:

0 =
∂

∂~βm

log

N∏

n=1

p(yn, ~xn)

=

N∑

n=1

∂

∂~βm

log p(yn, ~xn)

=

N∑

n=1

1

p(yn, ~xn)

∂p(yn, ~xn)

∂βm

=

N∑

n=1

1

p(yn, ~xn)
p(yn, ~xn, cm)

yn − f (~xn, ~βm)

σ2m,y

∂f (~xn, ~βm)

∂~βm

=
1

σ2m,y

N∑

n=1

p(cm|yn, ~xn)[yn − f (~xn, ~βm)]
∂f (~xn, ~βm)

∂~βm

=
1

Np(cm)

N∑

n=1

p(cm|yn, ~xn)[yn − f (~xn, ~βm)]
∂f (~xn, ~βm)

∂~βm

=

〈

[y − f (~x, ~β)]
∂f (~x, ~βm)

∂~βm

〉

m

. (16.34)

In the last few lines remember that since the left hand side is zero we can multiply or

divide the right hand side by a constant.

If we choose a local model that has linear coefficients,

f (~x, ~βm) =

I∑

i=1

βm,ifi(~x) , (16.35)

then this gives for the coefficients of the jth cluster

0 = 〈[y − f (~x, ~βm)]fj (~x)〉m

= 〈yfj(~x)〉m
︸ ︷︷ ︸

aj

−
I∑

i=1

βm,i 〈fj(~x)fi(~x)〉m
︸ ︷︷ ︸

Bji

⇒ ~βm = B−1 · ~a . (16.36)

Finally, once we’ve found the new model parameters then the new output width is

σ2,newm,y = 〈[y − f (~x, ~βm)]
2〉m . (16.37)

It’s a good idea to add a small constant to the input and output variance estimates

to prevent a cluster from shrinking down to zero width for data with no functional

dependence; this constant reflects the underlying resolution of the data.

Iterating this sequence of evaluting the forward and posterior probabilities at the data

points, then maximizing the likelihood of the parameters, finds the most probable set

of parameters that can be reached from the starting configuration. The only algorithm

parameter isM , the number of clusters. This controls overfitting, and can be determined
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by cross-validation. The only other choice to make is f , the form of the local model. This
can be based on past practice for a domain, and should be simple enough that the local

model cannot overfit. In the absence of any prior information a local linear or quadratic

model is a reasonable choice. It’s even possible to include more than one type of local

model and let the clustering find where they are most relevant.

Cluster-weighted modeling then assembles the local models into a global model that

can handle nonlinearity (by the nonlinear interpolation among local models), discontinuity

(since nothing forces clusters to stay near each other), non-Gaussianity (by the overlap

of multiple clusters), nonstationarity (by giving absolute time as an input variable so that

clusters can grow or shrink as needed to find the locally stationary time scales), find low-

dimensional structure in high-dimensional spaces (models are allocated only where there

are data to explain), predict not only errors from the width of the output distribution

but also errors that come from forecasting away from where training observations were

made (by using the input density estimate), build on experience (by reducing to a familiar

global version of the local model in the limit of one cluster), and the resulting model has

a transparent architecture (the parameters are easy to interpret, and by definition the

clusters find “interesting” places to represent the data) [Gershenfeld et al., 1999].

Taken together those specifications are a long way from the simple models we used at

the outset of the study of function fitting. Looking beyond cluster-weighted modeling,

it’s possible to improve on the EM search by doing a full Bayesian integration over prior

distributions on all the parameters [Richardson & Green, 1997], but this generality is

not needed for the common case of weak priors on the parameters and many equally

acceptable solutions. And the model can be further generalized to arbitrary probabilistic

networks [Buntine, 1996], a step that is useful if there is some a priori insight into the

architecture.

Chapter 20 will develop the application to time series analysis; another important

special case is observables that are restricted to a discrete set of values such as events,

patterns, or conditions. Let’s now let {sn, ~xn}
N
n=1 be the training set of pairs of input

points ~x and discrete output states s. Once again we’ll factor the joint density over clusters

p(s, ~x) =
M∑

m=1

p(s|~x, cm) p(~x|cm) p(cm) , (16.38)

but now the output term is simply a histogram of the probability to see each state for

each cluster (with no explicit ~x dependence). The histogram is found by generalizing the
simple binning we used at the beginning of the chapter to the cluster-weighted expectation

of a delta function that equals one on points with the correct state and zero otherwise:

p(s|~x, cm) =
1

Np(cm)

N∑

n=1

δsn=sp(cm|sn, ~xn)

=
1

Np(cm)

∑

n|sn=s

p(cm|sn, ~xn) . (16.39)

Everything else is the same as the real-valued output case. An example is shown in

Figure 16.8, for two states s (labelled “1” and “2”). The clusters all started equally likely
to predict either state, but after convergence they have specialized in one of the data

types as well as dividing the space.
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Figure 16.8. Cluster-weighted modeling with discrete output states. The small numbers are

the events associated with each point; the large numbers are the most likely event associated

with each cluster, and the lines are the cluster covariances.

This model can predict the probability to see each state given a new point by

p(s|~x) =
p(s, ~x)

∑

s p(s, ~x)
. (16.40)

For applications where computational complexity or speed is a concern there are easy

approximations that can be made. It is possible to use just the cluster variances instead

of the full covariance matrix, and to restrict the output models to one state per cluster

rather than keeping the complete histogram. If the goal is simply to predict the most

likely state rather than the distribution of outcomes, then evaluating the density can be

approximated by comparing the square distances to the clusters divided by the variances.

Finally, keeping only the cluster means reduces to a linear-time search to find the nearest

cluster, minm |~x− ~µm|, which defines a Voronoi tesselation of the space by the clusters
[Preparata & Shamos, 1985].

The final approximation of simply looking up the state of the cluster nearest a new

point might appear to not need such a general clustering to start with. A much simpler

algorithm would be to iteratively assign points to the nearest cluster and then move the

cluster to the mean of the points associated with it. This is called the k-means algorithm

[MacQueen, 1967; Hartigan, 1975]. It doesn’t work very well, though, because in the

iteration a cluster cannot be influenced by a large number of points that are just over the

boundary with another cluster. By embedding the cluster states in Gaussian kernels as

we have done, this is a soft clustering unlike the hard clustering done by k-means. The

result is usually a faster search and a better model.

Predicting states is part of the domain of pattern recognition. State prediction can also



DRAFT 16.5 Probabilistic Networks 211

be used to approximate a set of inputs by a common output; vector quantization applies

this to a feature vector describing a signal in order to compress it for transmission and

storage [Nasrabadi & King, 1988; Gersho & Gray, 1992]). Alternatively, it can be used

to retrieve information associated with related inputs stored in a content-addressable

memory [Kohonen, 1989; Bechtel & Abrahamsen, 1991]. The essence of these problems

lies in choosing good places to put the clusters, and the combination of EM with local

models provides a good solution.

16.5 PROBABILISTIC NETWORKS
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16.7 PROBLEMS

(15.1) Revisit the fitting problem in Chapter 14 with cluster-weighted modeling. Once

again take as a data set x = {−10,−9, . . . , 9, 10}, and y(x) = 0 if x ≤ 0 and

y(x) = 1 if x > 0. Take the simplest local model for the clusters, a constant. Plot
the resulting forecast 〈y|x〉 and uncertainty 〈σ2y|x〉 for analyses with 1, 2, 3, and
4 clusters.


