
12 Function Fitting

The goal of function fitting is to choose values for the parameters in a function to best

describe a set of data. There are many possible reasons to do this. If a specific meaning-

ful form for the function with a small number of free parameters is known in advance,

this is called parametric fitting, and finding the parameter values themselves may be

the goal. For example, an exponential decay constant might be sought to determine a

reaction rate. If the form of the function is not known, and so a very flexible function

with many free parameters is used, this becomes nonparametric fitting (although this

distinction is often vague). One reason to do nonparametric fitting is to try to find and

describe underlying trends in noisy data, in which case the fit must build in some prior

beliefs and posterior observations about what defines the difference between the signal

and the noise. In function approximation there is no noise; the goal is to take known

(and perhaps laboriously calculated) values of a function and find a new function that

is easier to evaluate and that can interpolate between, or extrapolate beyond, the known

values.

It’s useful to view function fitting in a context such as the Minimum Description

Length principle (MDL) [Rissanen, 1986], or the relatedAlgorithmic Information The-

ory [Chaitin, 1990]. One extreme is to report the observed data itself as your model. This

is not hard to do, but the “model” is very large and has no ability to generalize. Another

extreme is report the smallest amount of information possible needed to describe the

data, but this may require a great deal of supporting documentation about how to use

the model. A tidy computer program is of no use to a Martian unless it comes with a

complete description of a computer that can run it. The best model typically lies between

these extremes: there is some amount of information about the data, and some about the

model architecture. According to MDL, the sum of these two kinds of information taken

together should be as small as possible. While this principle cannot be applied directly

(like so many other attractive ideas, it includes a solution to the halting problem of de-

ciding if an arbitrary program will terminate, which is known to be impossible [Turing,

1936; Chaitin, 1994]), it is a useful guiding principle that can be made explicit given

specific assumptions about a problem.

In this chapter we will look at the basic features of function fitting: the general prin-

ciples by which data can be used to constrain a model, the (often overlooked) connection

with the choice of an error measure, how to fit a model with linear and nonlinear pa-

rameters, and the limits on what we can expect to learn from fitting. We will not be

particularly concerned with the functional form used; coming chapters will look in much

more detail at the representation of data, functions, and optimization strategies.

136 Function Fitting DRAFT

12.1 MODEL ESTIMATION

The general fitting problem has three ingredients: a model architecture (which we’ll call

m) that has a set of adjustable parameters ϕ, and measured data d. The goal is to find
values of the parameters that lead to the best agreement (in some sense) between the

predictions of the model and the data. An example ofm might be a polynomial of a given

order, where the ϕ are the coefficients.

A reasonable way to go about finding the best coefficients is to ask for the ϕ that are
most likely given the choice of the model and the measured data. This means that we

want to find the ϕ that maximizes p(ϕ|d,m). Using Bayes’ rule (equation 6.11), our job
is then to find

max
ϕ

p(ϕ|d,m) = max
ϕ

p(ϕ, d,m)

p(d,m)

= max
ϕ

p(d|ϕ,m) p(ϕ|m) p(m)

p(d|m) p(m)

= max
ϕ

p(d|ϕ,m) p(ϕ|m)

p(d|m)

= max
ϕ

p(d|ϕ,m) p(ϕ|m)
∫

ϕ p(d, ϕ|m) dϕ

= max
ϕ

p(d|ϕ,m) p(ϕ|m)
∫

ϕ p(d|ϕ,m) p(ϕ|m) dϕ

= max
ϕ

likelihood× prior

evidence
. (12.1)

The probability has been factored into three terms. The likelihood measures the match

between the data and the predictions of the model with the coefficents, based on an

error model. The prior introduces advance beliefs about which values of the coefficients

are reasonable and which are not. And the evidence measures how well the model can

describe the data.

If you solve equation (12.1) then you are an official card-carrying Bayesian [Bernardo

& Smith, 1994; Kruschke, 2010]. The reason that there are not too many of them around is

that solving equation (12.1) represents a lot of work. First of all, it’s necessary to explicitly

put priors on every parameter that is used. Then, the integration for the evidence is over

all values of all the parameters, which can be an enormous computational task for a large

model. Although efficient techniques have been developed for these kinds of integrals

usingMonte-Carlo sampling techniques that replace exact integration with a probabilistic

approximation [Besag et al., 1995], they are still computationally intensive. Finally, the

maximization over parameters is just an inner loop; the best description is given by a

maximization over model architectures as well, or, even better, over the combined outputs

from multiple models [Burnham & Anderson, 2002].

Much of the work in Bayesian model estimation goes into the integration for the

evidence term. But this does not affect a single maximization over ϕ; it comes in making
comparisons among competing model architectures. If we decide in advance that we are

going to stick with one architecture then equation (12.1) can be simplified by dropping

DRAFT 12.2 Least Squares 137

the conditioning on the model:

max
ϕ

p(ϕ|d) = max
ϕ

p(d|ϕ) p(ϕ)

p(d)
. (12.2)

Now the evidence term has become a simple prior on the likelihood of the data set. Even

this can usually be dropped; it’s relevant only in combining multiple data sets of varying

pedigrees. Finding parameters with (12.2) is called Maximum A Posteriori estimation

(MAP).

MAP still requires putting a prior on the parameters. This is a very powerful idea, to

be explored in the next chapter, but if we make the simplest choice of a uniform prior

p(ϕ) = p(d) = 1 then we’re left with

max
ϕ

p(ϕ|d) = max
ϕ

p(d|ϕ) . (12.3)

This is the easiest kind of model estimation of all, called Maximum Likelihood (ML).

That is what we will now apply.

12.2 LEAST SQUARES

Let’s assume that we are given a set of N noisy measurements of a quantity yn as a
function of a variable xn, and we seek to find values for coefficients ϕ in a function
yn = y(xn, ϕ) that describes their relationship (the generalization to vector variables
will be straightforward). In Section 6.1.2 we learned that in the absence of any other

information the Central Limit Theorem tells us that the most reasonable choice for the

distribution of a random variable is Gaussian, and so we will make that choice for the

distribution of errors in yn. Problem 11.3 will use an entropy argument to reach the

same conclusion. In practice, many systems choose to ignore this insight and have non-

Gaussian distributions; the real reason why Gaussianity is so commonly (and frequently

implictly) assumed is that it leads to a particularly simple and useful error model: least

squares.

If the errors do have a Gaussian distribution around the true value y(xn, ϕ) then the
probability to observe a value between y and y + dy is given by a Gaussian centered on
the correct value

p(y) dy =
1

√

2πσ2n
e−[y−y(xn,ϕ)]

2/(2σ2
n
) dy . (12.4)

The variance σ2n might depend on quantities such as the noise in a photodetector or the
number of samples that are measured.

We will further assume that the errors between samples are independent as well as

identically distributed (iid). This means that the probability to see the entire data set is

given by the product of the probabilities to see each point,

p(data|model) =
N∏

n=1

1
√

2πσ2n
e−[yn−y(xn,ϕ)]

2/(2σ2
n
) . (12.5)

We seek the ϕ that maximizes this probability. If p is maximal then so is its logarithm

138 Function Fitting DRAFT

(the log-likelihood), and since the log of a product is equal to the sum of the logs, this

becomes

− log p(data|model) =
N∑

n=1

[yn − y(xn, ϕ)]
2

2σ2n
+
1

2
log(2πσ2n) . (12.6)

Because we’ve moved the minus sign to the left hand side we now want to find the ϕ
that minimizes the right hand side. The first term measures the distance between the

data and the model, and the second one catches us if we try to cheat and make a model

with a huge variance that explains everything equally well (or poorly). We can drop the

second term since it does not depend on the parameters ϕ that we are adjusting, and so
we want to find the values that satisfy

min
ϕ

N∑

n=1

[yn − y(xn, ϕ)]
2

2σ2n
. (12.7)

If the variances σ2n are constant (in particular, if we set σ
2
n = 1 when we have no idea at

all what it should be) this reduces to

min
ϕ

N∑

n=1

[yn − y(xn, ϕ)]
2 . (12.8)

This is the familiar least squares error measure. It is the maximum likelihood estimator

for data with normally distributed errors, but it is used much more broadly because it is

simple, convenient, and frequently not too far off from an optimal choice for a particular

problem. An example of where least squares might be a bad choice for an error measure

is a bi-modal data set that has two peaks. The least squares error is minimized by a point

between the peaks, but such a point has very little probability of actually occurring in

the data set.

Instead of the square of the deviation between the model and the data, other powers

can be used as an error measure. The first power (the magnitude of the difference) is

the maximum likelihood estimate if the errors are distributed exponentially, and higher

powers place more emphasis on outliers.

12.3 LINEAR LEAST SQUARES

Once we’ve chosen our error measure we need to find the parameters for the distribution

that minimizes it. Perhaps the most important example of such a technique is linear least

squares, because it is straightforward to implement and broadly applicable.

To do a least squares fit we will start by expanding our unknown function as a linear

sum of M known basis functions fm

y(x) =
M∑

m=1

amfm(x) . (12.9)

We want to find the coefficients am that minimize the sum of the squared errors between
this model and a set of N given observations yn(xn). The basis functions fm need not

be orthogonal, but they must not be linear (otherwise the sum would be trivial); it is the

DRAFT 12.3 Linear Least Squares 139

coefficients am that enter linearly. For example, the fm could be polynomial terms, with
the am as the coefficients of the polynomial.

A least squares fit can be written as a matrix problem













f1(x1) f2(x1) · · · fM (x1)
f1(x2) f2(x2) · · · fM (x2)
f1(x3) f2(x3) · · · fM (x3)
...

...
...

...

f1(xN−1) f2(xN−1) · · · fM (xN−1)

f1(xN) f2(xN) · · · fM (xN)




















a1
a2
...

aM







=













y1
y2
y3
...

yN−1

yN













. (12.10)

If we have the same number of free parameters as data points then the matrix will be

square, and so the coefficients can be found by inverting the matrix and multiplying it

by the observations. As long as the matrix is not singular (which would happen if our

basis functions were linearly dependent), this inversion could be done exactly and our fit

would pass through all of the data points. If our data are noisy this is a bad idea; we’d like

to have many more observations than we have model parameters. We can do this if we

use the pseudo-inverse of the matrix to minimize the least squared error. The Singular

Value Decomposition (SVD) is a powerful technique that solves this (as well as many

other problems).

12.3.1 Singular Value Decomposition

For a general linear equation A · ~v = ~b, the space of all possible vectors ~b for which the
equation is solvable is the range of A. The dimension of the range (i.e., the number of

vectors needed to form a basis of the range) is called the rank of A. There is an associated

homogeneous problem A ·~v = 0; the vectors ~v that satisfy the homogeneous equation lie
in the nullspace of A. If there is no nullspace then the matrix is of full rank (which is

equal to the number of columns of A).

If A is an arbitrary N ×M matrix, an important result from linear algebra is that it

can always be written in the form [Golub & Loan, 1996]














A














=














U





















w1 0

w2
. . .

0 wM








︸ ︷︷ ︸

W









VT









(12.11)

whereU and V are orthogonal matrices whose inverse is equal to their transposeUT ·U =
V · VT = I (where I is the M ×M identity matrix). This is called the Singular Value

Decomposition (SVD) of the matrix, and the elements of the M ×M diagonal matrix

W are the singular values wi.

The reason that the SVD is so important is that the columns of U associated with

nonzero singular values (wi 6= 0) form an orthonormal basis for the range of A, and the
columns of V associated with wi = 0 form an orthonormal basis for the nullspace of

140 Function Fitting DRAFT

A. The singular values wi give the lengths of the principal axes of the hyper-ellipsoid

defined by A · ~x, where ~x lies on a hyper-sphere |~x|2 = 1.

In terms of the SVD, the solution to A · ~v = ~b is

~v = V ·W−1 ·UT ·~b . (12.12)

(the errors in this are discussed in Section 12.5). Since W is diagonal, its inverse W−1 is

also diagonal and is found by replacing each diagonal element by its inverse. This sounds

like a recipe for disaster since we just saw that wi = 0 for elements of the nullspace.

The odd solution to this problem is simply to declare that 1/0 = 0, and set to zero the
diagonal elements of W−1 corresponding to wi = 0. To see how this apparent nonsense

works, let’s look for another solution to A · ~v = ~b. Assume that ~v is found according to
the prescription for zeroing singular values in equation (12.12). We can add an arbitrary

vector ~v′ from the nullspace (A · ~v′ = 0) and still have a solution. The magnitude of the
sum of these vectors is

|~v + ~v′| = |V ·W−1 ·UT ·~b + ~v′|

= |V · (W−1 ·UT ·~b + VT · ~v′)|

= |W−1 ·UT ·~b + VT · ~v′| . (12.13)

Multiplication by V was eliminated in the last line because V is an orthogonal matrix and

hence does not change the magnitude of the answer (equation 13.7). The magnitude of

|~v + ~v′| is made up of the sum of two vectors. The first one will have its ith element
equal to 0 for every vanishing singular value wi = 0 because of the rule for zeroing these

elements of W−1. On the other hand, since ~v′ is in the nullspace,

A · ~v′ = ~0

U ·W · VT · ~v′ = ~0

W · VT · ~v′ = UT ·~0

W · VT · ~v′ = ~0 . (12.14)

This means that the ith component of the vector VT · ~v′ must equal 0 for every wi 6= 0.
Returning to the last line of equation (12.13), the left hand term can be nonzero only

if wi 6= 0, and the right hand term can be nonzero only if wi = 0: these two vectors

are orthogonal. Therefore, the magnitude of their sum is a minimum if ~v′ = ~0. Adding
any component from the nullspace to ~x increases its magnitude. This means that for an
underdetermined problem (i.e., one in which there is a nullspace), the SVD along with

the rule for zeroing elements in W−1 chooses the answer with the smallest magnitude

(i.e., no component in the nullspace).

Now let’s look at what the SVD does for an overdetermined problem. This is the

case that we care about for fitting data, where we have more measurements than free

parameters. We can no longer hope for an exact solution, but we can look for one that

minimizes the residual

|A · ~v −~b| =

√

(A · ~v −~b)2 . (12.15)

Let’s once again choose ~v by zeroing singular values in equation (12.12), and see what
happens to the residual if we add an arbitrary vector ~v′ to it. This adds an error of

DRAFT 12.3 Linear Least Squares 141

~b′ = A · ~v′:

|A · (~v + ~v′)−~b| = |A · ~v +~b′ −~b|

= |(U ·W · VT) · (V ·W−1 ·UT ·~b) +~b′ −~b|

= |(U ·W ·W−1 ·UT − I) ·~b +~b′|

= |U · [(W ·W−1 − I) ·UT ·~b +UT ·~b′]|

= |(W ·W−1 − I) ·UT ·~b +UT ·~b′| . (12.16)

Here again the magnitude is the sum of two vectors. (W ·W−1 − I) is a diagonal matrix,
with nonzero entries for wi = 0, and so the elements of the left term can be nonzero only

where wi = 0. The right hand term can be rewritten as follows:

A · ~v′ = ~b′

U ·W · VT · ~v′ = ~b′

W · VT · ~v′ = UT ·~b′ . (12.17)

The ith component can be nonzero only where wi 6= 0. Once again, we have the sum of
two vectors, one of which is nonzero only where wi = 0, and the other where wi 6= 0, and
so these vectors are orthogonal. Therefore, the magnitude of the residual is a minimum

if ~v′ = 0, which is the choice that SVD makes. Thus, the SVD finds the vector that

minimizes the least squares residual for an overdetermined problem.

The computational cost of finding the SVD of anN×M matrix isO(NM 2+M 3). This

is comparable to the ordinary inversion of an M ×M matrix, which is O(M 3), but the

prefactor is larger. Because of its great practical significance, good SVD implementations

are available in most mathematical packages. We can now see that it is ideal for solving

equation (12.10). If the basis functions are chosen to be polynomials, the matrix to be

inverted is called a Vandermonde matrix. For example, let’s say that we want to fit a 2D

bilinear model z = a0 + a1x + a2y + a3xy. Then we must invert












1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
...

... · · ·
...

1 xN−1 yN−1 xN−1yN−1

1 xN yN xNyN



















a0
a1
a2
a3






=













z1
z2
z3
...

zN−1

zN













. (12.18)

If the matrix is square (M = N), the solution can go through all of the data points.
These are interpolating polynomials, like those we used for finite elements. A rectangular

matrix (M < N) is the relevant case for fitting data. If there are any singular values near
zero (given noise and the finite numerical precision they won’t be exactly zero) it means

that some of our basis functions are nearly linearly dependent and should be removed

from the fit. If they are left in, SVD will find the set of coefficients with the smallest

overall magnitude, but it is best for numerical accuracy (and convenience in using the fit)

to remove the terms with small singular values. The SVD inverse will then provide the

coefficients that give the best least squares fit. Choosing where to cut off the spectrum of

singular values depends on the context; a reasonable choice is the largest singular value

142 Function Fitting DRAFT

weighted by the computer’s numerical precision, or by the fraction of noise in the data

[Golub & Loan, 1996].

In addition to removing small singular values to eliminate terms which are weakly

determined by the data, another good idea is to scale the expansion terms so that the

magnitudes of the coefficients are comparable, or even better to rescale the data to have

unit variance and zero mean (almost always a good idea in fitting). If 100 is a typical

value for x and y, then 104 will be a typical value for their product. This means that the
coefficient of the xy term must be ∼ 100 times smaller than the coefficient of the x or y
terms. For higher powers this problem will be even worse, ranging from an inconvenience

in examining the output from the fit, to a serious loss of numerical precision as a result

of multiplying very large numbers by very small numbers.

12.4 NONLINEAR LEAST SQUARES

Using linear least squares we were able to find the best set of coefficients ~a in a single
step (the SVD inversion). The price for this convenience is that the coefficients cannot

appear inside the basis functions. For example, we could use Gaussians as our bases, but

we would be able to vary only their amplitude and not their location or variance. It would

be much more general if we could write

y(x) =
M∑

m=1

fm(x,~am) , (12.19)

where the coefficients are now inside the nonlinear basis functions. We can still seek to

minimize the error

χ2(~a) =
N∑

n=1

(
yn − y(xn,~a)

σn

)2

, (12.20)

but we will now need to do an iterative search to find the best solution, and we are no

longer guaranteed to find it (see Section 14.5).

The basic techniques for nonlinear fitting that we’ll cover in this chapter are based on

the insight that we may not be able to invert a matrix to find the best solution, but we

can evaluate the error locally and then move in a direction that improves it. The gradient

of the error is

(∇χ2)k =
∂χ2

∂ak
= −2

N∑

n=1

yn − y(xn,~a)

σ2i

∂y(xn,~a)

∂ak
, (12.21)

and its second derivative (the Hessian) is

Hkl =
∂2χ2

∂ak∂al
(12.22)

= 2

N∑

n=1

1

σ2i

[
∂y(xn,~a)

∂ak

∂y(xn,~a)

∂al
− [yn − y(xn,~a)]

∂2y(xn,~a)

∂al∂ak

]

.

Since the second term in the Hessian depends on the sum of terms proportional to the

DRAFT 12.4 Nonlinear Least Squares 143

residual between the model and the data, which should be small and can change sign, it

is customary to drop this term in nonlinear fitting.

From a starting guess for ~a, we can update the estimate by the method of steepest
descent or gradient descent, taking a step in the direction in which the error is decreasing

most rapidly

~anew = ~aold − α∇χ2(~aold) , (12.23)

where α determines how big a step we make. On the other hand, χ2 can be expanded
around a point ~a0 to second order as

χ2(~a) = χ2(~a0) + [∇χ2(~a0)] · (~a− ~a0) +
1

2
(~a− ~a0) ·H · (~a− ~a0) , (12.24)

which has a gradient

∇χ2(~a) = ∇χ2(~a0) +H · (~a− ~a0) . (12.25)

The minimum (∇χ2(~a) = 0) can therefore be found by iterating

~anew = ~aold −H
−1 · ∇χ2(~aold) (12.26)

(this is Newton’s method). Either of these techniques lets us start with an initial guess

for ~a and then successively refine it.

12.4.1 Levenberg–Marquardt Method

Far from a minimum Newton’s method is completely unreliable: the local slope may shoot

the new point further from the minimum than the old one was. On the other hand, near a

minimum Newton’s method converges very quickly and gradient descent slows to a crawl

since the gradient being descended is disappearing. A natural strategy is to use gradient

descent far away, and then switch to Newton’s method close to a minimum. But how

do we decide when to switch between them, and how large should the gradient descent

steps be? The Levenberg–Marquardt method [Marquardt, 1963] is a clever solution to

these questions, and is the most common method used for nonlinear least squares fitting.

We can use the Hessian to measure the curvature of the error surface, taking small

gradient descent steps if the surface is curving quickly. Using the diagonal elements alone

in the Hessian to measure the curvature is suggested by the observation that this gives

the correct units for the scale factor α in equation (12.23):

δai = −
1

λHii

∂χ2

∂ai
, (12.27)

where λ is a new dimensionless scale factor. If we use this weighting for gradient descent,
we can then combine it with Newton’s method by defining a new matrix

Mii =
1

2

∂2χ2

∂a2i
(1 + λ)

Mij =
1

2

∂2χ2

∂ai∂aj
(i 6= j) . (12.28)

If we use this to take steps given by

M · δ~a = −∇χ2 (12.29)

144 Function Fitting DRAFT

or

δ~a = −M−1 · ∇χ2 , (12.30)

when λ = 0 this just reduces to Newton’s method. On the other hand, if λ is very large
then the diagonal terms will dominate, which is just gradient descent (equation 12.23).

λ controls an interpolation between steepest descent and Newton’s method. To use the
Levenberg–Marquardt method, λ starts off moderately large. If the step improves the
error, λ is decreased (Newton’s method is best near a minimum), and if the step increases
the error then λ is increased (gradient descent is better).

χ2 can easily have many minima, but the Levenberg–Marquardt method will find only
the local minimum closest to the starting condition. For this reason, a crucial sanity check

is to plot the fitting function with the starting parameters and compare it with the data.

If it isn’t even close, it is unlikely that Levenberg–Marquardt will converge to a useful

answer. It is possible to improve its performance in these cases by adding some kind of

randomness that lets it climb out of small minima. If a function is hard to fit because it

has very many local minima, or the parameter space is so large that it is hard to find sane

starting values, then a technique that is better at global searching is called for. These

extensions will be covered in Chapter 15.

12.5 ERRORS

The preceeding fitting procedures find the best values for adjustable parameters, but

there’s no guarantee that the best is particularly good. As important as finding the values is

estimating their errors. These come in two flavors: statistical errors from the experimental

sampling procedure, and systematic errors due to biases in the measuring and modeling

process. There are a number of good techniques for estimating the former; bounding the

latter can be more elusive and requires a detailed analysis of how the data are acquired

and handled.

It’s frequently the case that there is an error model for the measurements known in

advance, such as counting statistics or the presence of Johnson noise in an amplifier

[Gershenfeld, 2000]. For a linear fitting procedure it is then straightforward to propagate

this through the calculation. If there is an error ~ζ in a measurement, it causes an error ~η
in an SVD fit:

~v + ~η = V ·W−1 ·UT · (~b + ~ζ) . (12.31)

Since this is a linear equation, these random variables are related by

~η = V ·W−1 ·UT · ~ζ . (12.32)

If the components of ~ζ are zero-mean with a variance σ2ζ then the variance in the ith
component of ~η is

σ2η,i = 〈ηiηi〉

=

〈
∑

j

Vij
1

wj

∑

k

Ukjζk
∑

l

Vil
1

wl

∑

m

Umlζm

〉

DRAFT 12.5 Errors 145

=
∑

j

∑

l

VijVil
1

wj

1

wl

∑

k

∑

m

UkjUml 〈ζkζm〉
︸ ︷︷ ︸

σ2ζδkm

=
∑

j

∑

l

VijVil
1

wj

1

wl

∑

k

UkjUkl

︸ ︷︷ ︸

δjl

σ2ζ

= σ2ζ
∑

j

V 2
ij

w2j
. (12.33)

In the second line we’ve assumed that the measurement errors are an uncorrelated random

variable with a fixed variance σ2b; if this is not the case then their covariance must be
carried through the calculation. In the third line we’ve used the orthonormality of U.

Therefore, the error in the fit relative to that in the data is

σ2η,i
σ2ζ

=
∑

j

V 2
ij

w2j
. (12.34)

Absent such insight into an error model for the measurements it’s necessary to use

the observations themselves to estimate the fitting errors. If you are in the fortunate

position of being able to generate unlimited amounts of data this can be done following

its definition by analyzing an ensemble of independent data sets and then reporting the

distribution of fitting results. But in the much more likely circumstance of limited data

it’s not possible to produce an ensemble of measurements.

Or is it? Bootstrap resampling is based on the apparently-circular reasoning that the

data set is drawn from the distribution that describes it and hence drawing from the data

approximates that distribution. This is done by sampling with replacement. A random

number generator is used to choose elements of the data set, with an element remaining

in the original data set after it is chosen so that it can reappear in the derived one multiple

times. Random selection continues until a new data set has been produced of the same size

as the original one. This one uses the same elements, but it is an independent sampling

of them. These data can then be fit, and the resampling done again as many times as

desired. Problem 11.1 looks at an example of this.

Bootstrap error estimation was originally statistically suspect because it appears to

violate the deeply-held belief that data should not be reused in analysis. But, over time,

both theoretical and experimental work has shown that, while it is not as reliable as using

truly independent data sets, bootstrap can provide useful information about errors not

available in a single fit [Efron & Tibshirani, 1994]. Its typical performance can in fact be

quite good, although the worst-case errors in the errors can be quite bad.

Beyond bootstrap, in fitting functions that will be used for making forecasts the most

important error is how well the model generalizes on data not seen in the fitting procedure.

This can be evaluated through cross-validation, discussed in Section 14.4.

146 Function Fitting DRAFT

12.6 ESTIMATION, FISHER INFORMATION, AND THE

CRAMÉR –RAO INEQUALITY

We’ve seen increasingly powerful techniques to extract functions and errors from data.

Is there no limit to this cleverness? Unfortunately, and not surprisingly, there is indeed

a limit on how much information about unknown parameters can be extracted from a

set of measurements. This chapter closes with a view of the information in a probability

distribution that sets a limit on the accuracy of measurements.

Let pα(x) be a probability distribution that depends on a parameter α (such as the
variance of a Gaussian); the goal is to estimate the value ofα from a series of measurements
of x. Let f (x1, x2, ..., xN) be the estimator of α. It is biased if 〈f (x1, x2, . . . , xN)〉 6= α,
and it is consistent if limN→∞ f (x1, x2, . . . , xN) = α. An estimator f1 dominates f2 if
〈(f1(x1, x2, . . . , xN) − α)2〉 ≤ 〈(f2(x1, x2, . . . , xN) − α)2〉. This raises the question of
what is the minimum variance possible for an unbiased estimator of α? The answer is
given by the Cramér–Rao bound.

Start by defining the score:

V =
∂

∂α
log pα(x) =

∂αpα(x)

pα(x)
. (12.35)

The expected value of the score is

〈V 〉 =

∫
∞

−∞

pα(x)
∂αpα(x)

pα(x)
dx

=

∫
∞

−∞

∂αpα(x) dx

= ∂α

∫
∞

−∞

pα(x) dx

= ∂α1

= 0 . (12.36)

This means that σ2(V) = 〈V 2〉. The variance of the score is called theFisher information:

J(α) = 〈[∂α log pα(x)]
2〉 . (12.37)

The score for a set of independent, identically distributed variables is the sum of the

individual scores

V (x1, x2, . . . , xN) = ∂α log pα(x1, x2, . . . , xN)

=

N∑

n=1

∂α log pα(xn)

=

N∑

n=1

V (xn) , (12.38)

and so the Fisher information for the set is

JN (α) = 〈[∂α log pα(x1, x2, . . . , xN)]
2〉

= 〈V 2(x1, x2, . . . , xN)〉

DRAFT 12.6 Estimation, Fisher Information, and the Cramér–Rao Inequality 147

=

〈(
N∑

n=1

V (xn)

)2〉

=

N∑

n=1

〈V 2(xn)〉

= N J(α) (12.39)

(remember that the individual scores are uncorrelated).

The Cramér–Rao inequality states that the mean square error of an unbiased estimator

f of α is lower bounded by the reciprocal of the Fisher information:

σ2(f) ≥
1

J(α)
. (12.40)

To prove this, start with the Cauchy–Schwarz inequality

〈(V − 〈V 〉)(f − 〈f〉)〉2 ≤ 〈(V − 〈V 〉)2〉〈(f − 〈f〉)2〉

〈V f − 〈V 〉f − V 〈f〉 + 〈V 〉〈f〉〉2 ≤ 〈V 2 − 2V 〈V 〉 + 〈V 〉2〉〈(f − 〈f〉)2〉

〈V f〉2 ≤ 〈V 2〉〈(f − 〈f〉)2〉

〈V f〉2 ≤ J(α) σ2(f) (12.41)

(remember 〈V 〉 = 0). The lefthand side equals one:

〈V f〉 =

∫
∞

−∞

∂αpα(x)

pα(x)
f (x)pα(x) dx

=

∫
∞

−∞

∂αpα(x)f (x) dx

= ∂α

∫
∞

−∞

pα(x)f (x) dx

= ∂α〈f (x)〉

= ∂αα

= 1 , (12.42)

thus proving the Cramér–Rao inequality.

Just like the information theoretic channel capacity, this sets a lower limit on what is

possible but does not provide any guidance in finding the minimum variance unbiased

estimator. The inequality measures howmuch information the distribution provides about

a parameter. Not surprisingly, the Fisher information can be related to the entropy of

the distribution; this is done by de Bruijn’s identity [Cover & Thomas, 2006]. Roughly,

the entropy measures the volume and the Fisher information measures the surface of the

distribution.

One final caution about the Cramér-Rao bound. Not only may it not be reachable in

practice, but it may be misleading because it is a bound on unbiased estimators. Unbiased

does not necessarily mean better: it is possible for a biased estimator to dominate an

unbiased one (as well as have other desirable characteristics). However, just like channel

capacity, although it should not be taken too literally it does provide a good rough estimate

of what is plausible and what is not.

148 Function Fitting DRAFT

12.7 SELECTED REFERENCES

[Press et al., 2007] Press, William H., Teukolsky, Saul A., Vetterling, William T., &
Flannery, Brian P. (2007). Numerical Recipes in C: The Art of Scientific
Computing. 3nd edn. Cambridge: Cambridge University Press.

Numerical Recipes is particularly strong for function fitting.

[Cover & Thomas, 2006] Cover, Thomas M., & Thomas, Joy A. (2006). Elements of
Information Theory. 2nd edn. New York: Wiley-Interscience.

Good coverage of the many connections between information theory and
statistics.

12.8 PROBLEMS

(11.1) Generate 100 points x uniformly distributed between 0 and 1, and let y = 2+3x+ζ,
where ζ is a Gaussian random variable with a standard deviation of 0.5. Use an
SVD to fit y = a + bx to this data set, finding a and b. Evaluate the errors in a
and b

(a) With equation (12.34)

(b) By bootstrap sampling to generate 100 data sets

(c) From fitting an ensemble of 100 independent data sets

(11.2) Generate 100 points x uniformly distributed between 0 and 1, and let y = sin(2+
3x) + ζ, where ζ is a Gaussian random variable with a standard deviation of 0.1.
Write a Levenberg-Marquardt routine to fit y = sin(a+bx) to this data set starting
from a = b = 1, and investigate the convergence for both fixed and adaptively
adjusted λ values.

(11.3) An alternative way to choose among models is to select the one that makes the

weakest assumptions about the data; this is the purpose of maximum entropy

methods. Assume that what is measured is a set of expectation values for functions

fi of a random variable x,

〈fi(x)〉 =

∫
∞

−∞

p(x)fi(x) dx . (12.43)

(a) Given these measurements, find the compatible normalized probability distri-

bution p(x) that maximizes the differential entropy

S = −

∫
∞

−∞

p(x) log p(x) dx . (12.44)

(b) What is the maximum entropy distribution if we know only the second moment

σ2 =

∫
∞

−∞

p(x) x2 dx ? (12.45)

(11.4) Now consider the reverse situation. Let’s say that we know that a data set {xn}
N
n=1

was drawn from a Gaussian distribution with variance σ2 and unknown mean µ.
Try to find an optimal estimator of the mean (one that is unbiased and has the

smallest possible error in the estimate).

