
9 Finite Elements

We have seen how to use finite differences to approximate partial differential equations

on a lattice, and how to analyze and improve the stability and accuracy of these approx-

imations. As powerful as these ideas are, there are two important cases where they do

not directly apply: problems that are most naturally described in terms of a spatially

inhomogeneous grid, and problems that are posed in terms of a variational principle. For

example, in studying the deformations of an auto body, it can be most natural to describe

it in terms of finding the minimum energy configuration instead of a partial differential

equation, and for computational efficiency it is certainly important to match the location

of the solution nodes to the shape of the body.

These limitations with finite differences can be solved by the use of finite element

methods. They start with general analytical expansion techniques for finding approximate

solutions to partial differential equations (the method of weighted residuals for problems

that are posed by differential equations, and the Rayleigh–Ritz method for variational

problems), and then find a numerical solution by using local basis functions with the

spatial components of the field as the expansion weights. Instead of discretizing the space

in which the problem is posed, this discretizes the form of the function used to represent

the solution.

Because these problems are so important in engineering practice they consume an

enormous number of CPU cycles. Finite element solvers are not easy to write; most

people use dedicated packages. In addition to the core routines for solving large sparse

matrix problems and systems of ordinary differential equations, it is necessary to specify

the input geometry and then visualize the output results. There are many good general

commercial packages available such as ANSYS (http://www.ansys.com/) and MSC

(http://www.macsch.com/), as well as specialized ones such as Maxwell for electro-

magnetic fields (http://www.ansoft.com/). These can easily cost $10,000–$100,000;

there are also many available research packages such as Elmer (http://www.csc.fi/

english/pages/elmer).

9.1 WEIGHTED RESIDUALS

The method of weighted residuals converts a partial differential equation into a system of

ordinary differential equations (or an algebraic equation if there is no time dependence).

Let u(~x, t) be a field variable (such as temperature) that depends on space and possibly
on time, to be found as the solution of a given partial differential equation specified by a
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differential operator D, possibly with a source term f :

D[u(~x, t)] = f (~x, t) . (9.1)

An example is Poisson’s equation ∇2u = ρ. We will assume that u is a scalar, but the
following discussion is easily extended to vector ~u.

If ũ(~x, t) is an approximate solution, its residual R is defined to be the deviation from
the correct value

R(~x, t) = D[ũ(~x, t)]− f (~x, t) . (9.2)

Clearly a good approximate solution for u(~x, t) will make the residual as small as possible,
but there are many ways to define “small.”

The first step in developing finite differences was to consider ~x and t to be discrete
variables. Here, we will keep them continuous and instead write u(~x, t) as a discrete sum
of a set of expansion weights ai times (for now arbitrary) basis functions ϕi

u(~x, t) ≈
∑

i

ai(t)ϕi(~x) (9.3)

(Chapter 14 will examine the general problem of expanding a function in terms of basis

functions). We require that the ϕi be a complete set that can represent any function (up

to the order of the approximation), but they need not be orthogonal. We will assume that

the basis functions have been chosen to satisfy the boundary conditions; if this is not the

case then there will be extra boundary equations in the following derivation.

The residual will be identically equal to zero only for the correct solution. For our

approximate solution we will attempt the easier task of making the residual small in some

average sense. There are many strategies for weighting the residual in the average to

determine the best choice for the expansion coefficients ai, the three most important
ones for finite elements being:

• Collocation In collocation, the residual is set equal to zero at N sites

R(~xi) = 0 (i = 1, . . . , N ) . (9.4)

This gives a system of N equations for the N unknown ai’s. This is straightforward,
but says nothing about the value of the residual away from the points where it is

evaluated.

• Least Squares In the least squares method of weighted residuals, the square of the
residual is integrated over the domain of the problem, and the expansion coefficients

are sought that minimize this integral:

∂

∂ai

∫

R(~x)2 d~x = 0 . (9.5)

• Galerkin General Galerkin methods choose a family of weighting functions wi(~x)
to use in evaluating the residual

∫

R(~x)wi(~x) d~x = 0 . (9.6)
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Figure 9.1. The 1D finite element “hat” function.

While any one such equation does not imply that the absolute value of the residual is

small, if the set of weighting functions are nontrivially related then this can provide

a tight constraint on the magnitude of the residual. The most common choice for the

weighting functions is just the basis functions themselves

wi(~x) =
∂u

∂ai
= ϕi(~x) . (9.7)

This is called the Bubnov–Galerkin method, or sometimes just the Galerkin method.

In the Fourier–Galerkin method a Fourier expansion is used for the basis functions

(the famous chaotic Lorenz set of differential equations were found as a Fourier-

Galerkin approximation to atmospheric convection [Lorenz, 1963], Section 20.3).

Of all these methods, the Galerkin techniques are the most common because of the

convenient formulation they lead to.

These techniques for weighting residuals do not yet have anything to say about finite

elements; they apply equally well to any family of basis functions ϕi, and can be used

to find analytical as well as numerical approximations. To be successful, however, the

basis functions need to be chosen with care. In coming chapters we will see that global

functions generally do a terrible job of fitting local behavior. The trick in finite elements

is to recognize that the basis functions can be chosen so that they are nonzero only in

small regions (the elements), and further can be defined so that the unknown expansion

coefficients ai are just the values of the field variable u (and as many derivatives as are
needed for the problem) evaluated at desired locations, with the basis functions interpo-

lating between these values. For example, in 1D the simplest such expansion is piecewise

linear (the hat functions, shown in Figure 9.1):

ϕi =







x− xi−1
xi − xi−1

xi−1 ≤ x < xi

xi+1 − x

xi+1 − xi
xi ≤ x < xi+1

0 x < xi−1 or x ≥ xi+1

. (9.8)
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Since ϕi(xi) = 1 and ϕj(xi) = 0 for all j 6= i,

u(xi) =
∑

i

aiϕi(xi) (9.9)

= ai ,

therefore the expansion coefficient ai at the element point xi is just the field value
ui = u(xi). In one element xi ≤ x < xi+1 the field is piecewise linearly interpolated as

u(x) = ui
xi+1 − x

xi+1 − xi
+ ui+1

x− xi
xi+1 − xi

. (9.10)

If a finite element expansion is used in one of the residual weighting strategies the

result is a set of algebraic equations for the unknown coefficients ai, or a set of ordinary
differential equations if the problem is time dependent. Unlike finite differences, we are

now free to put the approximation nodes xi wherever is appropriate for the problem.
Let’s return to the simple first-order flux PDE

∂u

∂t
= −v

∂u

∂x
(9.11)

to see how the Galerkin method is applied. For each basis function ϕj there is a weighted

residual equation integrated over the problem domain
∫ (

∂u

∂t
+ v

∂u

∂x

)

ϕj dx = 0 (9.12)

(in this case the source term f = 0). Plugging in

u(x, t) =
∑

i

ai(t)ϕi(x) (9.13)

gives
∑

i

∫ (
dai
dt
ϕiϕj + vaiϕj

dϕi

dx

)

dx = 0 . (9.14)

This can be written in matrix form as

A ·
d~a

dt
+ B · ~a = ~0 (9.15)

where

Aij =

∫

ϕiϕj dx (9.16)

and

Bij = v

∫

ϕj

dϕi

dx
dx (9.17)

are matrices that depend only on the basis functions, and the vector ~a is the set of
expansion coefficients. This is now a system of ordinary differential equations that can be

solved with the methods that we studied in Chapter 7. Since each basis function overlaps

only with its immediate neighbors, the A and B matrices are very sparse and so they

can be solved efficiently (this is the main job of a finite element package, and much of

numerical linear algebra).

The linear interpolation of the hat functions breaks the solution space up into many
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elements, each of which has a single degree of freedom ui. On the other hand, if the
basis functions in equation (9.3) extend over the entire domain, then this can be viewed

as a single large element that has many degrees of freedom (the ai’s). There is a range
of options between these extremes, and part of the art of applying finite elements is

balancing the use of more-accurate large complicated elements with the use of less-

accurate simple small elements. As with solving ODEs, the simplest linear elements are a

poor approximation and it is usually advantageous to use more complex elements. It’s also

necessary to make sure that the elements have enough degrees of freedom to be able to

satisfy the residual weighting equation, which for polynomial expansions will depend on

the order of the PDE. For example, the bending of stiff plates has a term that depends

on the fourth spatial derivative of the displacement. Since the fourth derivative of a

linear element is zero, a linear element cannot satisfy this (other than the trivial solution

u = 0).

It is common to use polynomials for more complicated elements. Within a 1D element

xi ≤ x < xi+1, the piecewise linear approximation is made up of a superposition of two
shape functions

ψ1 =
x− xi
xi+1 − xi

ψ2 =
xi+1 − x

xi+1 − xi
, (9.18)

the parts of the basis functions that are nonzero in the element. These functions have the

desirable property of being equal to 1 at one of the element boundaries and vanishing at

the other. In addition, they sum to 1 everywhere in the interval, so that if ui = ui+1 then
the approximation is a constant over the interval. Lagrange interpolation generalizes this

to a set of N N th-order normalized polynomials defined to vanish at all but one of N
sites:

ψ1 =
(x2 − x)(x3 − x) · · · (xN − x)

(x2 − x1)(x3 − x1) · · · (xN − x1)

ψ2 =
(x1 − x)(x3 − x) · · · (xN − x)

(x1 − x2)(x3 − x2) · · · (xN − x2)

...

ψN =
(x1 − x)(x2 − x) · · · (xN−1 − x)

(x1 − xN )(x2 − xN ) · · · (xN−1 − xN )
. (9.19)

These can be used in higher-order elements.

A more intuitive way to define polynomial basis functions is in terms of the value of

the field and its derivatives at the boundary of the element. For example, in 1D for a

cubic polynomial

u = a0 + a1x + a2x
2 + a3x

3 (9.20)

defined over the interval 0 ≤ x < h, a trivial calculation shows that the a’s are related
to the boundary values u0, uh and the boundary slopes u̇0, u̇h by







u0
u̇0
uh
u̇h






=







1 0 0 0

0 1 0 0

1 h h2 h3

0 1 2h 3h2













a0
a1
a2
a3







. (9.21)
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Figure 9.2. 1D finite element polynomial basis functions defined in terms of the value and

derivative of the function at the element boundaries.

Given desired values for the u’s and u̇’s, this can be inverted to find the a’s. In partic-
ular, indexed in terms of (u0, u̇0, uh, u̇h), the four shape functions in this representation
are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). These give the element four degrees of
freedom, but if we impose continuity on the function and slope across the element bound-

aries this is reduced to two degrees of freedom. Figure 9.2 shows how the element shape

functions can be assembled into two basis functions, one having the value of ui for
the expansion coefficient, and the other u̇i. These handy functions, used for Hermite
interpolation, will return when we look at splines in Section 14.1.2.

The generalization of these elements to higher dimensions is straightforward. For

example, in 2D a triangular element with corners at (x0, y0), (x1, y1), and (x2, y2) can be
interpolated by three bilinear basis functions

ϕ0 =
(x1 − x)(y2 − y)

(x1 − x0)(y2 − y0)

ϕ1 =
(x2 − x)(y0 − y)

(x2 − x1)(y0 − y1)

ϕ2 =
(x0 − x)(y1 − y)

(x0 − x2)(y1 − y2)
. (9.22)

To use these elements it is necessary to cover space with a triangulation (a mesh of

triangles); such mesh generation is a major task of a finite element environment. In 3D

a tetrahedron is the primitive element, and so forth.

It is useful to integrate by parts in the Galerkin method to reduce the order of the

highest spatial derivative and therefore the required element order. For example, if we

start with a 1D wave equation

∂2u

∂t2
= v2

∂2u

∂x2
(9.23)

defined in the interval (0,1), the Galerkin expansion is

∑

i

∫ 1

0

(
d2ai
dt2

ϕiϕj − v2aiϕj

d2ϕi

dx2

)

dx = 0 . (9.24)
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The second term can be integrated by parts:

∑

i

d2ai
dt2

∫ 1

0

ϕiϕj dx

︸ ︷︷ ︸

Aij

+
∑

i

ai

[
∫ 1

0

v2
dϕi

dx

dϕj

dx
dx− v2ϕj

dϕi

dx

∣
∣
∣
∣

1

0

]

︸ ︷︷ ︸

Bij

= 0

A ·
d2~a

dt2
+ B · ~a = ~0 . (9.25)

This is now a second-order matrix differential equation for the vector of expansion

coefficients ~a, and because of the integration by parts the maximum spatial derivative is
single rather than double (and so first-order elements can be used). Since this is a linear

problem we can go further and assume a periodic time dependence

~a(t) = ~a0e
iωt (9.26)

to find an eigenvalue problem for the modes

ω2A · ~a0 = B · ~a0 . (9.27)

In higher dimensions, Green’s theorem can be used to reduce the order of the equation

by relating area or volume integrals to integrals over boundaries [Wyld, 1976].

9.2 RAYLE IGH –RITZ VARIATIONAL METHODS

In Chapter 5 we saw how many physical problems are most naturally posed in terms of a

variational integral, and then saw how to use Euler’s equation to find a differential equa-

tion associated with a variational principle. In this section we will look at finite element

methods that start directly from a variational integral I and find the field distribution
that makes an integral extremal

δI = δ

∫

F [u(~x, t)] d~x = 0 . (9.28)

F might be the energy, or action, or time, and there can be other integral constraints

added with Lagrange multipliers, such as the path length.

One of the most important applications of finite elements is to structural mechanics

problems, for which the integral to be minimized is the potential energy in a structure

(Section 9.4). For example, ignoring shear, the potential energy V of a beam bent from

its equilibrium configuration u(x) = 0 by a lateral force f (x) is given in terms of the
elasticity modulus E and the area moment of inertia I by

V =

∫ L

0

(

1

2
EI

(
d2u

dx2

)2

− u(x)f (x)

)

dx . (9.29)

The first term is the elastic energy stored in the beam by bending, and the second term

is the work done against the applied force. The equilibrium of the beam is given by the

variation δV = 0.
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As with the method of weighted residuals, we will approximate u by an expansion in
basis functions

u(~x, t) =
∑

i

ai(t)ϕi(~x) , (9.30)

and try to find the best choice for the ai’s. If the integral is extremal, then its partial
derivative with respect to all of the ai’s must vanish:

∂I

∂ai
= 0 (i = 1, . . . , N ) (9.31)

(with the equilibrium stability determined by whether this is a maximum or a minimum).

This Rayleigh–Ritz set of equations applies whether the ϕi(~x) are defined globally or
locally, but this becomes a prescription for a finite element method if each ϕi is nonzero

only in a local neighborhood and has the field variables and as many derivatives as

needed as the expansion coefficients (as we saw with the method of weighted residuals).

If a problem already has a discrete set of coordinates (such as the generalized coordinates

of a Lagrangian), the Rayleigh–Ritz method can be used directly without needing an

approximate expansion in basis functions.

For example, in 1D a mass on a spring has a potential energy kx2/2, and if there is an
applied force −F the work done in moving against the force is −Fx, so the equilibrium
position is easily found to be

∂

∂x

(
1

2
kx2 − Fx

)

= 0 ⇒ x =
F

k
. (9.32)

For the more difficult continuous case of equation (9.29), plugging in the expansion (9.30)

and asking that the energy be extremal gives

0 =
∂

∂aj

∫ L

0




1

2
EI

(
∑

i

ai
d2ϕi

dx2

)2

−
∑

i

aiϕi(x)f (x)



 dx

=
∑

i

ai

∫ L

0

EI
d2ϕi

dx2
d2ϕj

dx2
dx

︸ ︷︷ ︸

Aij

−

∫ L

0

ϕj(x)f (x) dx

︸ ︷︷ ︸

~bj

= A · ~a−~b

⇒ ~a = A−1 ·~b . (9.33)

Because of the second derivative, quadratic elements are needed.

The Rayleigh–Ritz method has converted this variational problem into an algebraic

one. More complex finite element problems result in nonlinear equations to find the

coefficients; solving these requires the search techniques to be covered in Chapter 15.

9.3 BOUNDARY CONDITIONS

A · ~a = ~b
inverse ill-conditioned if solution under-constrained, can’t invert

check rigid body motion, translation, rotation
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




M11 · · · M1N

...
. . .

...

MN1 · · · MNN











a1
...

aN




 =






b1
...

bN




 (9.34)

set a1 = α1
subtract first column from both sides






0 · · · M1N

...
. . .

...

0 · · · MNN











a1
...

aN




 =






b1 −M11α1
...

bN −MN1α1




 (9.35)

don’t know b1, eliminate with trivial equation








1 0 · · · 0

0 M22 · · · M2N

...
...

. . .
...

0 MN2 · · · MNN















a1
a2
...

aN







=








α1
b2 −M21α1

...

bN −MN1α1








(9.36)

repeat for another element a2 = α2










1 0 0 · · · 0

0 1 0 · · · 0

0 0 M33 · · · M3N

...
...

...
. . .

...

0 0 MN3 · · · MNN



















a1
a2
a3
...

aN










=










α1
α2

b3 −M31α1 −M32α2
...

bN −MN1α1 −MN2α2










(9.37)

now well-conditioned

9.4 SOLID MECHANICS

~y = ~x + ~u(~x) (9.38)

~u = displacement vector

~y + d~y = ~x + d~x + ~u(~x + d~x) (9.39)

= ~x + d~x + ~u(~x) +∇~u · d~x

d~y = (I +∇~u) · ~dx

≡ F · ~dx

Fij = δij +
∂ui
∂xj

(9.40)

F = deformation gradient tensor
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ǫ = δl/l = strain

~m = F · n̂
|~m| = |n̂| + δ = 1 + δ

|~m|2 = 1 + δ + 2δ2 ≈ 1 + 2δ

|~m|2 = ~m · ~m (9.41)

= (F · n̂)T · (F · n̂)

= (n̂T · FT ) · (F · n̂)

= n̂T · (FT ) · (F) · n̂)

(FTF)ij =
∑

k

(

δik +
∂uk
∂xi

)(

δkj +
∂uk
∂xj

)

(9.42)

≈ δij +
∂uj
∂xi

+
∂ui
∂xj

δ =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)

≡ ǫij (9.43)

traction ~T = force/area in n̂ direction
~T = σ · n̂
σ = Cauchy stress tensor

ǫ = infinitesimal strain tensor
σij = Cijklǫkl C = elastic modulus tensor

ǫij = Sijklσkl S = elastic compliance tensor
E = Young’s modulus

ν = Poisson’s ratio

Cijkl =
E

2(1 + ν)

(
δilδjk + δikδjl

)
+

Eν

(1 + ν)(1− 2ν)
δijδkl (9.44)

Sijkl =
1 + ν

2E

(
δilδjk + δikδjl

)
−
ν

E
δijδkl (9.45)

potential energy density U = 1
2
σijǫij

σ =
∂U

∂ǫ
(9.46)

σ = Cǫ
ǫ = Bu

U =
1

2
~ǫT · ~σ (9.47)

=
1

2
~ǫT ·D~ǫ
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=
1

2
~uTBTDB~u

≡
1

2
~uTK~u

K = stiffness matrix

boundary loading potential energy P = −~r · ~u
~r = residual force vector

V =
1

2
~uTK~u− ~r~u (9.48)

∂V

∂uk
= K · ~u− ~r = 0 (9.49)

K · ~u = ~r (9.50)

moments

ϕa(x, y) =
(x− xb)(yc − yb)− (y − yb)(xc − xb)

(xa − xb)(yc − yb)− (ya − yb)(xc − xb)
(9.51)
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9.6 PROBLEMS

(9.1) Consider the damped wave equation

∂2u

∂t2
= v2

∂2u

∂x2
+ γ

∂

∂t

∂2u

∂x2
. (9.52)

Take the solution domain to be the interval [0, 1].
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(a) Use the Galerkin method to find an approximating system of differential equa-

tions.

(b) Evaluate the matrix coefficients for linear hat basis functions, using elements

with a fixed size of h.
(c) Now find the matrix coefficients for Hermite polynomial interpolation basis

functions, once again using elements with a fixed size of h. A symbolic math
environment is useful for this problem.

(9.2) Model the bending of a beam (equation 9.29) under an applied load. Use Hermite

polynomial interpolation, and boundary conditions fixing the displacement and

slope at one end.


