
13 Transforms

The coming chapters will revisit the ground we just covered, finding significant problems

and remarkable capabilities lurking behind apparently innocuous assumptions made in

last chapter’s introduction to function fitting. Here we ask the easily overlooked question

of whether data is best analyzed in the form that it is given (hint: the answer is frequently

no). This is a question about representation – what’s the best way to view the data to

highlight the features of interest? The goal will be to boil a set of measurements down

to a smaller set that is more independent, freeing subsequent analysis from having to

rediscover the structure. A good representation can go a long way towards solving a

difficult problem, and conversely a bad one can doom an otherwise well-intentioned

effort.

13.1 ORTHOGONAL TRANSFORMS

We will generally be concerned with orthogonal transformations. These are ones that are

particularly simple to undo, an important feature since we don’t want our transformation

to throw away information in the data unless we tell it to.

A matrix is orthogonal if its inverse is equal to its transpose,

M
T ·M = I , (13.1)

where as usual the transpose is denoted by

M
T
ij ≡Mji (13.2)

and I is the identity matrix with 1s on the diagonal and 0s elsewhere. Multiplication of a

vector by an orthogonal matrix defines an orthogonal transformation on the vector. For

a complex matrix the adjoint is the complex conjugate of the transpose

M
†
ij ≡M∗

ji . (13.3)

If the adjoint is the inverse,

M
† ·M = I , (13.4)

then M is unitary. The column or row vectors ~vi of an orthogonal matrix are not only
orthogonal, ~vi · ~vj = 0 (i 6= j), they are orthonormal, ~vi · ~vj = δij , but by convention
the matrix itself is still usually just called orthogonal.



150 Transforms DRAFT

An important property of the adjoint is that it interchanges the order of a product of

matrices:

(A · B)† = B† · A† . (13.5)

Remember also that matrix multiplication is distributive (A · (B + C) = A · B + A · C)
and associative (A · (B ·C) = (A ·B) ·C), but need not be commutative (A ·B 6= B ·A).
Now consider a linear transformation on a column vector ~x to a new one ~y = M · ~x.

The Euclidean norm of ~x is its length as measured by the sum of the squares of the

elements,

|~x|2 = ~x† · ~x =
∑

i

x∗
ixi =

∑

i

|xi|2 . (13.6)

If M is unitary, then the norm of ~y is

|~y|2 = |(M · ~x)† · (M · ~x)|
= |(~x† ·M†) · (M · ~x)|
= |~x† · (M† ·M) · ~x|
= |~x† · ~x|
= |~x|2 . (13.7)

A unitary (or orthogonal) transformation preserves the norm of a vector. It rotates a data

point to a new location, but doesn’t change its distance from the origin. This means that it

can rearrange the points but not do something as nasty as make some of them disappear.

13.2 FOURIER TRANSFORMS

The Discrete Fourier Transformation (DFT) is a familiar example of a unitary trans-

formation (Problem 12.1). Given a data vector {x0, x1, . . . , xN−1}, the DFT is defined
by

Xf =
1√
N

N−1
∑

n=0

e2πifn/Nxn

≡
N−1
∑

n=0

Mfnxn

= M · ~x , (13.8)

and the corresponding inverse transform by

xn =
1√
N

N−1
∑

f=0

e−2πifn/NXf . (13.9)

The Xf are the coefficients for an expansion of the vector in terms of sinusoids.

Computing the DFT requires multiplying the data vector by the transform matrix.

Finding one element needs N multiplies and adds, and there are N elements, so this



DRAFT 13.2 Fourier Transforms 151

appears to be an O(N 2) algorithm. Remarkably, and significantly, this is not the case.

Notice the the DFT can be split into two sums as follows:

Xf =
1√
N

N−1
∑

n=0

e2πifn/Nxn

=
1√
N

N/2−1
∑

n=0

e2πif (2n)/Nx2n +
1√
N

N/2−1
∑

n=0

e2πif (2n+1)/Nx2n+1

=
1√
N

N/2−1
∑

n=0

e2πif (2n)/Nx2n +
e2πif/N√

N

N/2−1
∑

n=0

e2πif (2n)/Nx2n+1

=
1√
N

N/2−1
∑

n=0

e2πifn/(N/2)x2n +
e2πif/N√

N

N/2−1
∑

n=0

e2πifn/(N/2)x2n+1

= Xeven
f + e2πif/NXodd

f . (13.10)

Instead of one N -point transform we’ve broken it into two N/2-point transforms, one
on the even points and one on the odd ones. This requires O[(N/2)2] + O[(N/2)2] =
O(N 2/2) steps to do the transforms and one final multiplication and addition to combine
each element, instead of the original O(N 2) steps. The even and odd transforms can

likewise be split, and so forth, until we’ve broken the calculation into N single-point

transforms. Reassembling each of them through the hierarchical factoring takes log2N
adds and multiplies, for a total of O(N log2N ) steps. If N = 106, doing this requires

O(107) steps (about a second at 10 Mflops), versusO(1012) operations for the DFT (about
a day at 10 Mflops). Quite a savings! The modern incarnation of this clever idea is called

the Fast Fourier Transform (FFT) and is associated with Cooley and Tukey [Cooley

& Tukey, 1965], but it has a long history dating all the way back to Gauss in 1805. It

is an example of the powerful algorithm design principle of divide-and-conquer: if you

can’t solve a difficult problem, split it into successively smaller problems until they can

be solved and then recombine them to find the answer [Aho et al., 1974].

The clarity of the FFT implementation hides many subtleties in its application [Op-

penheim & Schafer, 2009]. The highest frequency possible in a DFT is f = 1/2; beyond
that the 2π periodicity of the exponential will wrap still higher components in xn onto

lower frequencies. This is the phenomenon of aliasing and requires that a signal be sam-

pled at more than twice the highest frequency of interest (called the Nyquist frequency).

And since the transform is done over a finite time it is equivalent to transforming an

infinite series multipied by a finite-length pulse. Since multiplication in the time domain

is equal to convolution in the frequency domain, and the Fourier transform of a pulse

is a sinc function sin(2πf∆T )/(πf ), sharp features in the transform get spread out by

the finite window and spurious side-lobes appear. There are many other ways to win-

dow data with weighting functions other than a rectangular step, in order to optimize

desired attributes such as spectral resolution, sidelobe suppression, or phase uniformity.

Finally, remember that the discrete sampling of the spectrum done by the DFT can miss

important features that lie between the points of the transform.

The FFT is one of the most important algorithms in all of numerical mathematics.

Beyond the many applications we’ve already seen for Fourier transforms it crops up in



152 Transforms DRAFT

t i m e

fr
eq
u
en
cy

t i m e

fr
eq
u
en
cy

t i m e

fr
eq
u
en
cy

t i m e

fr
eq
u
en
cy

s h o r t - t i m e  F o u r i e r  t r a n s f o r m w a v e l e t  t r a n s f o r m

t i m e  s e r i e s F o u r i e r  t r a n s f o r m

Figure 13.1. Division of time-frequency spaces by the coefficients of discrete transforms.

places where you might not expect it, such as speeding up the multiplication of two long

numbers (which is really just a convolution [Knuth, 1997]). When Cooley (then at IBM)

first presented the FFT, IBM concluded that it was so significant it should be put in

the public domain to prevent anyone from trying to patent it, and so it was published

openly. Ironically, its very success has made this kind of behavior less common now.

13.3 WAVELETS

Wavelets are families of orthogonal transformations that generalize Fourier transforms

in a very important way by introducing locality (Figure 13.1). Trigonometric functions

are defined everywhere. This makes them good at describing global properties, such as

the frequency of a signal, but very bad at describing locally varying properties. On the

other hand, a time series represents a signal as a series of local impulses, which have an

infinite spectrum of Fourier coefficients. A sine wave is most conveniently expressed in

the frequency domain, and a step function is much more naturally defined in the time

domain. In between these extremes lie most signals of interest, for which neither a global

nor a local representation is best. A short-time Fourier transform (STFT) tries to do

this by transforming short windows of data. This has the problem that low-frequency



DRAFT 13.3 Wavelets 153

x ( 1 ) w ( 1 )

x

l o w - p a s s

f i l t e r

h i g h - p a s s

f i l t e r

x ( 2 ) w ( 2 )

l o w - p a s s

f i l t e r

h i g h - p a s s

f i l t e r

x ( 3 ) w ( 3 )

l o w - p a s s

f i l t e r

h i g h - p a s s

f i l t e r

Figure 13.2. Interpretation of the wavelet transform as a hierarchical filter bank.

estimates need big windows to be meaningful, while high-frequency estimates need small

windows to be relevant. This is exactly the happy compromise that wavelets provide,

retaining a useful notion of both location and frequency.

Wavelets can be understood as a hierarchical filter bank, shown in Figure 13.2. A

signal is applied to two filters, one passing the high-frequency part of the signal and the

other passing the low-frequency part. Then, the low-frequency part goes through a pair

of filters, separating it into a new high-frequency component and an even lower-frequency

one. This procedure is continued until the signals at the bottom are left with a single

point. Since we don’t want the transform to throw away information unless we explicitly

decide to, each of these steps is done invertibly.

The earliest wavelets were based on expanding a function in terms of rectangular

steps, the Haar wavelets [Haar, 1910]. This is usually a very poor approximation; we

will instead start with the Daubechies wavelets, which are among the simplest but still

most important families [Daubechies, 1988]. Given a record of N points xn, the first

step is to write down a linear filter

yn =
M−1
∑

i=0

bixn−i (13.11)

that is zero for “smooth” signals. To design it we certainly want it to vanish for a constant,

so that (taking the order M = 4 for example)

b0 · 1 + b1 · 1 + b2 · 1 + b3 · 1 = 0 . (13.12)

The next thing that we could ask for is that it vanish for a linear ramp

b0 · 0 + b1 · 1 + b2 · 2 + b3 · 3 = 0 . (13.13)

Since this is a linear filter it will then vanish for any x = αn + β. It will turn out that
for a fourth-order wavelet this is all that we can do; given the other constraints to be

included six terms will be needed if we want it to vanish for a quadratic curve, and so



154 Transforms DRAFT

forth. Next, we want to define another filter

zn =
M−1
∑

i=0

cixn−i (13.14)

that responds exactly oppositely, being large for smooth signals and small for nonsmooth

signals. A linear filter is just a convolution of the signal with the filter’s coefficients, so the

series of the coefficients is the signal that the filter responds maximally to (Chapter 19).

Therefore, if the output of our second filter vanishes when the coefficients of the first

one are input to it, it will be as unlike the first one as two linear filters can be. This means

that we want
M−1
∑

i=0

cibi = 0 (13.15)

(remember that because a linear filter is a convolution, the associated time series flips the

order of the coefficients, and so both have the same index in this sum). A pair of filters

with this property are called quadrature mirror filters. For M = 4 the equation to be

solved is

c0b0 + c1b1 + c2b2 + c3b3 = 0 . (13.16)

By inspection, this can be enforced by flipping the order of the coefficients as well as the

sign of every other one:

b0 = c3 b1 = −c2 b2 = c1 b3 = −c0 . (13.17)

We now have two filters: one is large for the smooth parts of the signal, and the other

for the nonsmooth parts. To apply them to an input vector we can write it as a matrix

problem:

































c0 c1 c2 c3
c3 −c2 c1 −c0

c0 c1 c2 c3
c3 −c2 c1 −c0

. . .

c0 c1 c2 c3
c3 −c2 c1 −c0

c2 c3 c0 c1
c1 −c0 c3 −c2





































































x0
x1
...
...
...
...
...

xN−1





































=





































x(1)0
w(1)0
x(1)1
w(1)1
...

x(1)N/2−2

w(1)N/2−2

x(1)N/2−1

w(1)N/2−1





































(13.18)

(all empty matrix elements are 0). Such a representation of a moving filter is called a cir-

culant matrix. Periodic boundary conditions were used to wrap around the coefficients,

but it’s also possible to define special coefficients for the boundaries to avoid that if neces-

sary. I’ve called the output of the “smooth” filter x(1), and the output of the “nonsmooth”
filter w(1). Each component has half as many points as the original series. The former is
a lower resolution description of the signal, and the latter contains the fine structure that

was lost in the smoothing.

It is convenient if the transformation is orthogonal so that the inverse is just the



DRAFT 13.3 Wavelets 155

transpose. Requiring that the matrix times its transpose results in the identity matrix

gives two nontrivial equations

c20 + c21 + c22 + c23 = 1

c2c0 + c3c1 = 0 . (13.19)

We also had two equations for the filter

c3 − c2 + c1 − c0 = 0

−c2 + 2c1 − 3c0 = 0 (13.20)

(written in terms of the c’s instead of the b’s). This is four equations in four unknowns,
which can be solved to find

c0 =
1 +
√
3

4
√
2

c1 =
3 +
√
3

4
√
2

c2 =
3−
√
3

4
√
2

c3 =
1−
√
3

4
√
2

. (13.21)

Using these coefficients, the transformation can be inverted by using the transpose









































c0 c3 c2 c1
c1 −c2 c3 −c0
c2 c1 c0 c3
c3 −c0 c1 −c2

c2 c1 c0 c3
c3 −c0 c1 −c2

. . .

c2 c1 c0 c3
c3 −c0 c1 −c2

c2 c1 c0 c3
c3 −c0 c1 −c2



















































































x(1)0
w(1)0
...
...
...
...
...

x(1)N/2−1

w(1)N/2−1











































=









































x0
x1
...
...
...
...
...

xN−2

xN−1









































Let’s now multiply the output from the filters by another orthonormal matrix that

splits the two types of results:

































1 0

0 1

1 0

0 1 0
. . .

0 1 0

0 1

1 0

0 1





































































x(1)0
w(1)0
x(1)1
w(1)1
...

x(1)N/2−2

w(1)N/2−2

x(1)N/2−1

w(1)N/2−1





































=







































x(1)0
x(1)1
...

x(1)N/2−2

x(1)N/2−1

w(1)0
w(1)1
...

w(1)N/2−1







































The first half of the resulting vector is a smoothed version of the original signal at half



156 Transforms DRAFT

the time resolution, and the second half contains the details lost in the smoothing. The

original series can be recovered by multiplying by the transposes of the two matrices used.

We can now go ahead and do the same sequence of operations on the new x’s, to give
a version at even lower resolution as well as some more “detail” coefficients. Repeating

the filtering and shuffling operations until we’re left with just two x values and so can
go no further gives the following sequence of coefficient vectors:

x0 x(1)0 x(1)0 x(2)0 x(2)0 x
(log2 N−1)

0 x
(log2 N−1)

0

x1 w(1)0 x(1)1 w(2)0 x(2)1 w
(log2 N−1)

0 x
(log2 N−1)

1
... x(1)1

... x(2)1
... x

(log2 N−1)

1 w
(log2 N−1)

0

... w(1)1
... w(2)1 x(2)N/4−1 w

(log2 N−1)

1 w
(log2 N−1)

1

...
...

...
... w(2)0 w

(log2 N−2)

0 w
(log2 N−2)

0
...

...
...

... w(2)1
...

...
...

...
... x(2)N/4−1

... · · ·
...

...
...

... x(1)N/2−1 w(2)N/4−1 w(2)N/4−1

...
...

...
... w(1)0 w(1)0 w(1)0

...
...

...
... w(1)1 w(1)1 w(1)1

...
...

... x(1)N/2−1

...
...

...
...

...

xN−1 w(1)N/2−1 w(1)N/2−1 w(1)N/2−1 w(1)N/2−1 w(1)N/2−1 w(1)N/2−1

This defines the Discrete Wavelet Transformation (DWT), and the final w’s are the
wavelet coefficients. They represent structure at many scales as well as at many locations.

If any of the wavelet coefficients are small they can be set to zero to approximate the

original series with less information, but the beauty of this kind of compression is that it

can find important regions in the time-frequency space rather than projecting all of the

information onto the frequency axis (as done by an FFT) or the time axis (by impulses).

A sine wave looks like, well, a sine wave. What does a wavelet look like? We can find

out by setting one of the wavelet coefficients to 1 and all the others to 0, and then running

the inverse wavelet transform back to find the x series that produces it (just as inverting
a Fourier transform of an impulse gives a sinusoidal function). Problem 12.2 shows that

this results in quite a curious looking function. To understand it, consider that after one

pass of the smoothing filter,

x(1)n = c0x2n + c1x2n+1 + c2x2n+2 + c3x2n+3 . (13.22)

If a function exists that satisfies

Xn = c0X2n + c1X2n+1 + c2X2n+2 + c3X2n+3 (13.23)

then it will be unchanged by the smoothing (this is a dilation equation, instead of a

difference or differential equation). The associated wavelet function is

Wn = c3X2n − c2X2n+1 + c1X2n+2 − c0X2n+3 . (13.24)

In the limit of many iterations, so that n approaches a continuous variable, these are the



DRAFT 13.4 Principal Components 157

basis functions that are invariant under the transformation. Remarkably, in the continuum

limit these apparently innocent and certainly useful functions are very complicated, not

even differentiable.

We’ve been looking at fourth-order wavelets; higher orders are similarly defined. For

each two additional coefficients used it’s possible to go to one higher derivative of the

function that can be matched. Beyond order 6, the coefficients must be found numerically.

Our wavelets also have had compact support (they are zero everywhere except for where

they are defined); this is convenient numerically but can be relaxed in order to get

other benefits such as the analytical form and simple spectrum of the harmonic wavelets

[Newland, 1994].

Just as a high-dimensional Fourier transform can be done by transforming each axis in

turn, wavelets can be extended to higher dimensions by transforming each axis separately

[Press et al., 2007]. This restricts the wavelets to the axes of the space; it is also possible

to define more general multi-dimensional wavelets. The state of the art in wavelets has

advanced rapidly since their introduction; see for example [Chui et al., 1994]. Beyond

wavelets there are other time-frequency transforms, such asWigner functions [Hlawatsch

& Boudreaux-Bartels, 1992], which first arose as a probabilistic representation of quantum

mechanics for studying semi-classical systems [Balazs & Jennings, 1984].

13.4 PRINCIPAL COMPONENTS

Wavelets were constructed based on the assumption that time and frequency are the

interesting axes against which a signal can be viewed. This certainly need not be true,

and doesn’t even apply to a set of measurements that have no particular temporal or

spatial ordering. Rather than designing one transform to apply to all data we might hope

to do better by customizing a transform to provide the best representation for a given

data set (where “best” of course will reflect some combination of what we hope to achieve

and what we know how to accomplish).

Let’s once again let ~x be a measurement vector, and ~y = M · ~x be a transformation
to a new set of variables with more desirable properties. The covariance matrix of ~y is
defined by

Cy ≡ 〈(~y − 〈~y〉) · (~y − 〈~y〉)T 〉 , (13.25)

where the outer product of two column vectors ~A and ~B is

( ~A · ~BT )ij = AiBj , (13.26)

and the average is taken over an ensemble of measurements. A reasonable definition of

“best” is to ask that the covariance matrix of ~y be diagonal, so that each of its elements
is uncorrelated.

To find the required transformation, the covariance matrix of ~y can be related to that
of ~x:

Cy = 〈(~y − 〈~y〉) · (~y − 〈~y〉)T 〉
= 〈[M · (~x− 〈~x〉)] · [M · (~x− 〈~x〉)]T 〉
= 〈[M · (~x− 〈~x〉)] · [(~x− 〈~x〉)T ·MT ]〉



158 Transforms DRAFT

= M · 〈(~x− 〈~x〉) · (~x− 〈~x〉)T 〉 ·MT

= M · Cx ·MT . (13.27)

Because Cx is a real symmetric matrix it’s possible to find an orthonormal set of eigen-

vectors [Golub & Loan, 1996]. Now consider what happens if the columns of MT are

taken to be these eigenvectors. After multiplication by Cx each eigenvector is returned

multiplied by its corresponding eigenvalue. Then because of the orthonormality, the

multiplication of this matrix byM gives zeros off-diagonal, and returns the values of the

eigenvalues on the diagonal. Therefore Cy is a diagonal matrix as desired. If there are

linear correlations among the elements of ~x then some of the eigenvalues will vanish;
these components of ~y can be dropped from subsequent analysis. For real data sets the
elements might not be exactly equal to zero, but the relative magnitudes of them let the

important components be found and the less important ones be ignored. Such variable

subset selection is frequently the key to successful modeling.

Use of the covariance matrix of a set of measurements to find a transformation to new

variables that are uncorrelated is called Principal Components Analysis (PCA). It is

such a useful idea that it led to many other related three-letter acronyms (TLAs). One is

theKarhunen–Loéve Transform (KLT) [Fukunaga, 1990]. Here, a measurement vector

~y (such as a time series, or the values of the pixels in an image) is expanded in a sum
over orthonormal basis vectors ~ϕi with expansion coefficients xi,

~y =
∑

i

xi~ϕi . (13.28)

Given an ensemble of measurements of ~y, the goal is to choose a set of ~ϕi that make the

xi’s as independent as possible. Defining M to be a matrix that has the ~ϕi as column

vectors, the expansion of ~y can be written as ~y = M · ~x, where ~x is a column vector of
the expansion coefficients. We’ve already seen that the covariance matrices of ~y and ~x
are related by

Cy =M ·Cx ·MT (13.29)

or

M
T · Cy ·M = Cx . (13.30)

Therefore if we choose the ~ϕi to be the eigenvectors of Cy then Cx will be diagonal.

Since the ~ϕi are orthonormal, given a new measurement ~y the expansion coefficients can
be found from

~y · ~ϕj =
∑

i

xi~ϕi · ~ϕj =
∑

i

xiδij = xj . (13.31)

This provides a convenient way to do lossy compression for storage or communications,

by using only the significant coefficients to partially reconstruct a data vector from the

bases.

13.5 INDEPENDENT COMPONENTS

PCA starts with the covariance matrix of all of the original variables and then throws out

the insignificant components. Factor Analysis directly seeks a smaller set of variables that



DRAFT 13.5 Independent Components 159

can explain the covariance structure of the observations [Hair et al., 1998]. Independent

Components Analysis (ICA) goes further to search for a transformation that makes the

new variables independent (p(yi, yj) = p(yi)p(yj)) rather than just uncorrelated [Comon,
1994; Bell & Sejnowski, 1995; Hyvärinen et al., 2001].

In the blind source separation problem, unknown sources ~s are mixed in observations
~x by an unknown matrix ~x = A · ~s. If weights W = A

−1 could be found then the

sources could be separated by ~s =W · ~x, but how can this be done without information
about either A or ~s? The surprising answer is that this can be possible if the signals
are interesting. In Section 6.1.2 we saw that a sum of random variables approaces a

Gaussian distribution for almost any distribution of the variables. Conversely, as long as

the distributions do not start out as Gaussians, then the departure from Gaussianity can

be used as a signature for separating them. This is the basis for ICA.

Gaussianity can be tested with the kurtosis (4th cumulant), but because that raises

variables to the fourth power it’s sensitive to outliers. Entropy is another test (Problem

11.3 showed that the entropy of a Gaussian is maximal for continuous distributions with

a given variance), but that requires an estimate of the probability distribution function.

A simpler approximation is to use a contrast function [Hyvärinen, 1999]. For a vector

of weights ~w corresponding to one component of ~s (i.e., one row of W), this approach
seeks to maximize the expected value of a function relative to its value for a Gaussian,

max〈f (~w ·~x)〉, where the observations are used to evaluate the expectation. A convenient
example is f (~x) = log cosh(~x) [Hyvärinen & Oja, 2000].

Because ICA can’t determine absolute scale factors inW, it’s convential in ICA to start

with PCA, so that the data is zero mean and has a diagonal covariance matrix with unit

variances (called sphering the data). The weight vectors are then taken to have |~w|2 = 1
to preserve that undetermined norm. To find them we want to make extremal

F = 〈f (~w · ~x)〉 − λ~w · ~x (13.32)

with the Lagrange multiplier for the normalization. Taking the gradient,

∂F

∂ ~w
= 〈~xf ′(~w · ~x)− λ~w (13.33)

The Jacobian can be approximated by:

∂2F

∂ ~w2
= 〈~x~xT f ′′(~w · x)〉 − λI

≈ 〈~x~xT 〉〈f ′′(~w · x)〉 − λI

≈
(

〈f ′′(~w · x)〉 − λ
)

I (13.34)

because of the initial diagonalization of the covariance matrix. A Newton root-finding

step is performed by subtracting the gradient over the Jacobian:

~w ← ~w −
(

〈~xf ′(~w · ~x)〉 − λ~w
)

/
(

〈f ′′(~w · ~x)〉 − λ
)

(13.35)

Multiplying both sides by
(

λ− 〈f ′′(~w · ~x)〉
)

,

~w
(

λ− 〈f ′′(~w · ~x)〉
)

← ~w
(

λ− 〈f ′′(~w · ~x)〉
)

+
(

〈~xf ′(~w · ~x)〉 − λ~w
)

(13.36)

Since we’ll be normalizing the weights the multiplicative factor can be dropped on the



160 Transforms DRAFT

left side, and the right side simplified:

~w ← 〈~xf ′(~w · ~x)〉 − ~w〈f ′′(~w · ~x)〉 (13.37)

After this step the normalization is preserved with

~w ← ~w

|~w|2
(13.38)

(this corresponds to choosing the Lagrange multiplier). Starting with random normalized

weights, this iteration will seek the least-Gaussian mixture. Multiple weights can either

be found by orthogonalizing serially to span the remaining subspace, or be calculated

jointly [Hyvärinen, 1999]. This is a global linear ICA transformation; it can done both

nonlinearly and locally, with the hierarchical function architectures to be covered in the

next chapter [Hyvärinen et al., 2001].

13.6 COMPRESSED SENSING

Nyquist

measure, then compress

compress, then measure

sparsity

linear, nonadaptive

random matrix

null space property(NSP), restricted isometry property (RIP)

Gaussian random matrix, variance 1/m

random partial Fourier matrix, m rows

min |z| Az = y

L0, support, combinatorial, NP-hard

L1, linear program, constrained optimization

relaxation

[Fornasier & Rauhut, 2011]

[Donoho, 2006]

[Candès et al., 2006; Candes et al., 2006; Candes & Tao, 2006]

13.7 SELECTED REFERENCES

[Golub & Loan, 1996] Golub, Gene H., & Loan, Charles F. Van. (1996). Matrix
Computations. 3rd edn. Baltimore, MD: Johns Hopkins University Press.

Everything you always wanted to know about transformations with matrices.

[Fukunaga, 1990] Fukunaga, Keinosuke (1990). Introduction to Statistical Pattern
Recognition. 2nd edn. Boston, MA: Academic Press.

Much of the effort in pattern recognition goes into finding good representations.



DRAFT 13.8 Problems 161

13.8 PROBLEMS

(12.1) Prove that the DFT is unitary.

(12.2) Calculate the inverse wavelet transform, using Daubechies fourth-order coeffi-

cients, of a vector of length 212, with a 1 in the 5th and 30th places and zeros

elsewhere.

(12.3) Consider a measurement of a three-component vector ~x, with x1 and x2 being
drawn independently from a Gaussian distribution with zero mean and unit vari-

ance, and x3 = x1 + x2.

(a) Analytically calculate the covariance matrix of ~x.
(b) What are the eigenvalues?

(c) Numerically verify these results by drawing a data set from the distribution

and computing the covariance matrix and eigenvalues.

(d) Numerically find the eigenvectors of the covariance matrix, and use them to

construct a transformation to a new set of variables ~y that have a diagonal
covariance matrix with no zero eigenvalues. Verify this on the data set.

(12.4) Generate pairs of uniform random variables {s1, s2} with each component con-
tained in [0, 1].

(a) Plot these data.

(b) Mix them (~x = A · ~s) with a square matrix A =
[

1 2

3 1

]

and plot.

(c) Make ~x zero mean, diagonalize with unit variance, and plot.
(d) Find the independent components of ~x with the log cosh contrast function,

and plot.


