
1 Introduction

How would you:

• How would you synthesize the sound of a violin?
• Analyze the sound of a violin?
• Model the traffic on a highway?
• Modify the traffic on a highway?
• Predict the bending of a beam?
• Design the bending of a beam?
• Simulate the weather?
• Forecast the weather?
• Recognize an image?
• Render an image?
• Animate a fish?
• Optimize a fish?

These questions do not have simple answers: all are active research areas. There cannot
be a single recipe that covers this whole menu. There are many possible levels of descrip-
tion; choosing among them depends on your goals and on the available tools. This text
is a tour through those spaces. For example, if you seek to make a mathematical model
of a violin, you could use a numerical model based on a first-principles description. This
lets you match your model parameters to measurements on a real instrument, and change
parameters between a Stradivarius and a Guarneri. However, running it in real time will
require a supercomputer, and the effort to find good parameters for the model is almost
as much work as building a real violin. Alternatively, you could try to use an analytical
(pencil-and-paper) solution to the governing equations; in return for some large approx-
imations you may be able to find a useful explicit solution, but it might not sound very
good. Finally, you could forget about the underlying governing equations entirely and
experimentally try to find an effective description of how the player’s actions are related to
the sound made by the instrument (which is a reasonable thing to do because dissipation
and symmetries in a system reduce the effective number of degrees of freedom [Temam,
1988]). These three approaches (analytical, numerical, and observational) comprise the
three parts of this book.

To build a model there are many decisions that must be made, either explicitly or more
often implicitly. Some of these are shown in Figure 1.1. Each of these is a continuum
rather than a discrete choice. This list is not exhaustive, but it’s important to keep
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returning to it: many efforts fail because of an unintentional attempt to decribe either too
much or too little.
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Figure 1.1. Some levels of description for mathematical model building.

These are meta-modeling questions. There are no rigorous ways to make these choices,
but once they’ve been decided there are rigorous ways to use them. There’s no single
definition of a “best” model, although quasi-religious wars are fought over the question.
One good attempt is the Minimum Description Length principle [Rissanen, 1986], es-
sentially Occam’s Razor: the best model is the one that is the smallest (including the
information to specify both the form of the model and the values of the parameters).
Unfortunately, this has two serious problems: finding the minimum description length
for a given problem is an uncomputable task, and it says nothing about the error metric
that will be used to judge the model. A stock trader, civil engineer, cardiologist, and
video game designer have very different standards for success. They differ in the prior
information they have about their problem, and the posterior criteria that they will use
to evaluate and update their model. Ultimately, the strongest useful statement is that the
best model is the one that works best for you.

Surprisingly little ambition is needed to exceed the performance of almost any available
computer, and conversely computer hardware speeds have historically raced ahead of the
development of software tools to use them effectively. Where computational speed is
most important, the examples in this book will use efficient portable low-level tools. On
the other hand, where algorithm clarity is most important, high-level environments will
be used. The appendices provide brief introductions to these.

No single reference text covers the range of subjects in this book. To help access the
literature, each chapter ends with a list of relevant general sources, and then cites the
more specialized literature as needed throughout. Where important ideas are introduced
without any references they are either so well known that they need no further citation,
or are my own results that I have not published elsewhere (the context should make this
distinction clear).
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