
2 Linear Algebra

notation: dot vs transpose
Linear algebra can be thought of as the streelamp of mathematical modeling. In the

areas that it illuminates it provides great clarity, but it is also tempting to look there
for things that really lie elsewhere. Linear algebra will have a central but uneasy role
throughout this book: the assumption of linearity will lead to results that are convenient
and understandable, but not applicable to the most challenging problems. Conversely,
familiarity with linear algebra can breed a kind of contempt that neglects its depth; this
chapter is included rather than assumed as background because of the more advanced
results that will be needed elsewhere in the book.

A function f (x1, x2, . . . , xN ) is said to be linear if rescaling and offsetting an argument
does the same to the result:

f (x1, x2, . . . , αxi + β, . . . , xN ) = α f (x1, x2, . . . , xi, . . . , xN )

+ f (x1, x2, . . . , β, . . . , xN ) . (2.1)

Writing out all of those elements quickly becomes a nuisance, so the first thing that
we’ll do is group numbers into vectors and matrices. These will be used to solve systems
of algebraic equations (and recognize when and why they can’t be solved), and then as
arguments of nonlinear functions. This chapter will consider static relationships among
these variables, which will be extended in the next chapter to dynamic relationships in
linear differential and difference equations.

2.1 NUMBERS, VECTORS, AND MATRICES

Modeling usually begins with a (frequently implicit) choice of a way to represent the
quantities of interest. This small step can have large consequences, because a bad repre-
sentation can make an easy problem appear difficult, (and vice versa). The question of
representation will recur throughout this book; we start here with the simplest question
of all, the kind of numbers to use.

Deceptively simple questions about numbers can have remarkably deep answers Wiles
naturally counted by integers. While these are usually written
The very first decision to be made in modeling is what kind of numbers to use. If

the quantities in a problem are naturally discrete, such as the coordinates of a point on a
lattice, or the number of observations in a histogram,
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use integers. These will generally be written in decimal notation using powers of ten
(i.e., base 10), such as

249 = 2× 102 + 4 × 101 + 9× 100 , (2.2)

although when computers are involved it can be more convenient to use

11111001 = 1× 23 + 1× 22 + 1× 21 + 0× 20 (2.3)

F9 = F(15)× 161 + 9× 160 (2.4)

base 2 base 16: 0-9A-F
binary
fractions
hexadecimal
rational irrational
[Hardy & Wright, 1998]
complex conjugate ref quaternion chapter magnitude
A vector ~v is a set of N elements

~v =


a1

a2
...
aN

 . (2.5)

These might be, for example, the coordinates of a point in an N-dimensional space, or
the set of grades of a group of students taking a course in mathematical modeling.

dot product
notation: dot vs transpose
norm measure distances in other spaces angle

~u · ~v = (u1, . . . , uN ) · (|~v|, 0, . . . , 0)

= u1|~v|
= |~u||~v| cos θ (2.6)

The norm or magnitude of a vector |~v| can be defined as

|~v|2 =
N∑
n=1

|vn|2

=
N∑
n=1

v∗nvn

=
N∑
n=1

v2
n (for real variables) (2.7)

(this is called the L2 norm because it uses the second power of the components). The
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dot product of two vectors is defined by

~u · ~v =
N∑
n=1

unvn (2.8)

unit vector
A set of vectors {~vi} is orthogonal if

~vi · ~vj = 0 (i 6= j) (2.9)

and orthonormal if

~vi · ~vj = δij (2.10)

(where δij is the Kroenecker delta which equals 1 if i = j and is 0 otherwise). If all of
the columns of a matrix are orthonormal then

ATA = I ≡


1 0 · · ·

0
. . .

... 1

 , (2.11)

where I is the identity matrix. A matrix with this property is said to be orthogonal
(although its columns or rows are really orthonormal).

linear independence
complex norm?
Given a linearly-independent set of vectors {ui}, it’s possible to construct an orthonor-

mal set {vi} by Gram-Schmidt orthogonalization. The first step is to normalize one of
the vectors

~v1 =
~u1

|~u1|
(2.12)

so that

~v1 · ~v1 =
~v1 · ~v1

|~u1|2
=
|~u1|2

|~u1|2
= 1 . (2.13)

Then this component is subtracted off of a second vector,

~v2 =
~u2 − (~u2 · ~v1)~v1

|~u2 − (~u2 · ~v1)~v1|
, (2.14)

choosing the magnitude so that

~v2 · ~v1 =
~u2 · ~v1 − (~u2 · ~v1)~v1 · ~v1

|~u2 − (~u2 · ~v1)~v1|
= 0 , (2.15)

and dividing by the magnitude to normalize ~v2 · ~v2 = 1. Next, both components are
subtracted from a third vector,

~v3 =
~u3 − (~u3 · ~v1)~v1 − (~u3 · ~v2)~v2

|~u3 − (~u3 · ~v1)~v1 − (~u3 · ~v2)~v2|
‘ (2.16)

with magnitudes chosed so that ~v3 · ~v2 = ~v3 · ~v1 = 0 and ~v3 · ~v3 = 1.

êiêj = δij (2.17)
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cos θ =
|~u‖|
|~u|

=
~u · v̂
|~u|

=
~u · ~v
|~u||~v|

|~u||~v| cos θ = ~u · ~v (2.18)

M vectors can be assembled to form an N ×M matrix

A = [~a1 ~a2 · · · ~aN ] =


a11 a12 · · · · · · a1M

a21
. . .

...
aN1 aNM

 . (2.19)

Matrices can likewise be assembled to form higher-dimensional tensors [], although we
will not need them here.

The transpose of a matrix is

AT =



a11 a21 · · · aN1

a12
. . .

...

...
a1M aMN


, (2.20)

and the complex conjugate of the transpose is the adjoint A† = A∗T where each complex
element anm = xnm + iynm (i2 = −1) is replaced by its conjugate a∗mn = xmn − iymn.
If A = A†, the matrix is said to be Hermitian. The adjoint (or transpose) of a product is
equal to the products of the adjoints (or transposes), in the opposite order:

(AB)T =
∑

= BTAT (2.21)

...
If A is an N ×M matrix and B is an M × L matrix, their product AB is an N × L

matrix with elements

(AB)nl =
M∑
m=1

anmbml . (2.22)

From the definition, matrix multiplication is distributive

A(B + C) = AB + AC (2.23)

and associative

A(BC) = (AB)C (2.24)
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but need not be commutative

AB 6= BA . (2.25)

The product of a vector and a matrix

A~v =


a11 a12 · · · · · · a1M

a21
. . .

...
aN1 aNM




v1

v2
...
vM

 (2.26)

is a vector with elements

(A~v)n =
M∑
m=1

anmvm . (2.27)

The inner product or dot product of two vectors is

~uT~v =

[u1 u2 · · · uM ]


v1

v2
...
vM

 =
M∑
m=1

umvm ≡ ~u · ~v (2.28)

and the outer product is

~u~vT =


u1

u2
...
uM


[v1 v2 · · · vM ]

=

 u1v1 u1v2 · · ·
u2v1 u2v2

...
. . .

 . (2.29)

complex, norm, magnitude adjoint
positive definite matrix
basis

2.2 SYSTEMS OF EQUATIONS

If A is a square matrix, and ~v is a vector such that

A~v = λ~v , (2.30)

then ~v is an eigenvector of A with eigenvalue λ. This can be rewritten as

(A− λI)~x = ~0 , (2.31)

where ~0 is a vector of zeros. If (A− λI) is invertible this gives the trivial solution

~x = (A− λI)−1 ~0 = ~0 . (2.32)

Therefore, for non-trivial eigenvectors to exist (A−λI) must not be invertible and hence

|A− λI| ≡ ∆(λ) = 0 . (2.33)

This defines the characteristic polynomial ∆(λ) for A.
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char poly imply N eigenvalues
determinant

V (ê1, ê2, . . . , êN ) = 1 (2.34)

V (. . . , ~xi, . . . , ~xi, . . .) = 0 (2.35)

V (. . . , ~xi + ~xj , . . . , ~xi + ~xj , . . .) = V (. . . , ~xi, . . . , ~xi, . . .) + V (. . . , ~xi, . . . , ~xj , . . .)

+V (. . . , ~xj , . . . , ~xi, . . .) + V (. . . , ~xj , . . . , ~xj , . . .)

= V (. . . , ~xi, . . . , ~xj , . . .) + V (. . . , ~xj , . . . , ~xi, . . .)

(2.36)

V (. . . , α~xi + β~xj , . . .) = αV (. . . , ~xi . . .) + βV (. . . , ~xj . . .) (2.37)

det(AB) = det(A) det(B) (2.38)

det(A−1) =
1

det(A)
(2.39)

as transformation volume
recursive definition
A elements aij

det A ≡ |A| =
∑
j

aijCij (2.40)

cofactor

Cij = (−1)i+jMij (2.41)

minor

det(A) = V

∑
i

ai1êi,
∑
j

aj2êj , . . .


=
∑
i

ai1V

êi,∑
j

aj2êj , . . .


≡
∑
i

ai1Vi1

1 =
1

det(A)

∑
i

ai1Vi1 (2.42)
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∑
j

aj1Vj2 =
∑
j

aj1V

(∑
i

ai1êi, êj ,
∑
k

ak3êk, . . .

)

= V

∑
i

ai1êi,
∑
j

aj1êj ,
∑
k

ak3êk, . . .


= 0 (2.43)

1
det(A)

∑
i

aijVik = δjk (2.44)

1
det(A)

VTA = I (2.45)

A−1 =
1

det(A)
VT (2.46)

use in change of coordinates noise problem
det prod = prod det
det = prog eigenvalues
determinant as volume

det(M−1) det(A) det(M) = det(Λ) (2.47)

det(A) = det(Λ) =
N∏
n=1

λn (2.48)

adjoint matrix
inverse

A−1 =
CT

|A|
(2.49)

Gauss-Jordan elimination

AA−1 = I

TAA−1 = TI

(TA)A−1 = T (2.50)

inverse products equals product inverses
domain and range of set of equations
If AA† = I, the matrix is unitary.
Gauss elimination
characteristic polynomial
diagonalization
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similarity transform

~x =
N∑
n=1

an~vn = [~v1 ~v2 · · · ~vN ]


a1

a2
...
aN


≡M~a (2.51)

modal matrix M

A~x = ~y (2.52)

range null space rank dimension range
repeated eigenvalues
Jordan blocks
cf generation of solutions to differential equations!
rank
generalized eigenvalues, eigenvectors
generalized inverse

2.3 S INGULAR VALUES

norm L2

Hermitian adjoint
transpose
transpose product = product transpose adjoint product = product adjoint
Hermitian
symmetric

~v†H~v = ~v†λ~v = λ|~v|2 (2.53)

(
~v†H~v

)†
= λ†|~v|2 (2.54)

(
~v†H~v

)†
= ~v†H†~v = ~v†H~v = λ|~v|2 (2.55)

λ† = λ λ real

M−1HM = Λ (2.56)
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(
M−1HM

)†
= Λ†

M†H†M−1† = Λ

M†HM−1† = M−1HM (2.57)

M† = M−1

orthonormal basis
positive semidefinite
positive definite
eigenvalues
H = A†A

H† =
(
A†A

)†
= A†A†

†
= A†A = H (2.58)

H~vn = λn~vn (2.59)

rank of a product
σi =

√
λi

~ui =
1
σi

A~vi (2.60)

~u†i~uj =
1

σiσj
~v†iA

†A~vj

=
1

σiσj
~v†iH~vj

=
λj
σiσj

~v†i~vj

= δij (2.61)

~u†iA~vj = ~u†iσj~uj = σjδij (2.62)

extend by Gram-Schmidt orthogonalization
v beyond rank in null space

U†AV = Σ (2.63)
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Σ =



σ1 0
. . .

σr
0

. . .
0 0


(2.64)

A = UΣV† (2.65)

SVD Singular Value Decomposition
rank
SVD for full row rank simplification relate to Zen Kalman filter

2.4 FUNCTIONS OF MATRICES

matrix function power series converges for eigenvalues

eAt = I + At +
1
2
A2t2 + · · · (2.66)

d

dt
eAt = A + A2t + · · ·

= AeAt (2.67)

eAteBt =
(

I + At +
1
2
A2t2 + · · ·

)(
I + At +

1
2
A2t2 + · · ·

)
= I + (A + B)t +

1
2
A2t2 +

1
2
B2t2 + ABt + · · · (2.68)

e(A+B)t = I + (A + B)t +
1
2

(A + B)2t2 + · · ·

= I + (A + B)t +
1
2
A2t2 +

1
2
B2t2 +

1
2

(AB + BA)t + · · · (2.69)

Cayley-Hamilton
relates Mn to lower order powers
mult char poly M−1 to get inverse from eigenvalues

0 = |λI− A|
= λN + aN−1λ

N−1 + · · · + a0

≡ C(λ) (2.70)



DRAFT 2.4 Functions of Matrices 17

a0 = |A| (2.71)

0 = C(A)

= AN + aN−1AN−1 + · · · + a0I

(2.72)

A = MΛM (2.73)

A2 = MΛM−1MΛM−1

= MΛΛM−1

= MΛ2M−1 (2.74)

C(A) = AN + aN−1AN−1 + · · · + a0I

= M
(
ΛN + aN−1ΛN−1 + · · · + a0I

)
M−1

= M0M−1

= 0

(2.75)

generalize to Jordan blocks
inverse

0 = AN + aN−1AN−1 + · · · + a0I

= AN−1 + aN−1AN−2 + · · · + a0A−1

A−1 = − 1
a0

(
AN−1 + aN−1AN−2 + · · · + a1I

)
(2.76)

exponential

eAt = I + At +
1
2
A2t2 + · · ·

= α0(t)I + α1(t)A + α2(t)A2 + · · · + αN−1(t)AN−1

(2.77)

functions of a matrix
using generalized inverses
go through book to move linear algebra definitions to here
drop use of dots for matrix multiplication?
ODE chapter problem on exponential matrix solution
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2.6 P R O B L E M S

(2.1) pseudo-inverse from SVD
(2.2) rotation unitary, dot product angle
(2.3) exponential angular momentum = rotation (lead into SU(2) problem)


