
17 Constrained Optimization

best frequently has constraints
nutrition
groceries ~g ≥ 0
prices ~p
price min~g ~g · ~p
minimum requirements ~m
nutrition value N
N · ~g ≥ ~m
defines linear program, LP
price may be a function of quantity, not linear
quadratic objective, quadratic program, QP
general case mathematical program
portfolios, routing airplanes, running a factory
program as plan, not computer program, but can be same
electrical networks [Dennis, 1958]
routing [Kelly, 1991, Papadimitriou & Steiglitz, 1998]
flow control [Low et al., 2002]
layering [Chiang et al., 2007]
sorting
variables ~x, objective minimize f (~x), constraints ~c(~x)
max = -min
slack variables to convert inequality to equality

c(~x) ≥ 0 (17.1)

replace with

c(~x)− s = 0

s ≥ 0 (17.2)

combinatorial x equals 1 or -1 can be relaxed as algebraic constraint (x2 − 1)2 = 0
L1 norm

|~x|1 =
∑
i

|xi| (17.3)

DRAFT 17.1 Lagrange Multipliers 219

compressed sensing, sparsity
non-differentiable
[Schmidt et al., 2007]
(x)+ = max(x, 0)
(x)− = max(−x, 0)

|x| = (x)− + (x)+ (17.4)

can be relaxed

|x| ≈ |x|α

=
1
α

[
log
(
1 + e−αx

)
+ log (1 + eαx)

]
(17.5)

d|x|α
dx

=
1

1 + e−αx
− 1

1 + eαx
(17.6)

d2|x|α
dx2

=
2αeαx

(1 + eαx)2 (17.7)

minimize for increasing α

17.1 LAGRANGE MULTIPLIERS

single equality constraint c(~x) = 0
step in direction ~d to minimize f while satisfying the constraint

0 = c(~x + ~δ)

≈ c(~x) +∇c · ~δ
= ∇c · ~δ (17.8)

step also minimizes f

0 > f (~x + ~δ)− f (~x)

≈ f (~x) +∇f · ~δ − f (~x)

= ∇f · ~δ (17.9)

if∇c(~x) and∇f (~x) aligned not possible to find a direction, hence ~x is a local minimizer
define Lagrangian

L = f (~x)− λc(~x) (17.10)

solve for

220 Constrained Optimization DRAFT

0 = ∇L
= ∇f − λ∇c (17.11)

multiple constraints
linear combination

∇f (~x) =
∑
i

λi∇ci(~x) (17.12)

f (~x) =
∑
i

λici(~x) (17.13)

solving gives ~x(~λ), substitute into constraints to find ~λ
inequality constraint

0 ≤ c(~x + ~δ)

≈ c(~x) +∇c · ~δ (17.14)

if constraint not active (c > 0), can just do gradient descent ~δ = −α∇f
for an active constraint ∇f · ~δ < 0 and ∇c · ~δ ≥ 0
define half-planes
no intersection if point in same direction ∇f = λ∇c
same condition, but now λ ≥ 0

17.2 OPTIMALITY

first-order condition
equality constraints ci(~x), i ∈ E
inequality constraints ci(~x), i ∈ I
inactive constraint λi = 0
complementarity: λici = 0: Lagrange multiplier only non-zero when constraint is

active, otherwise reduces to gradient descent

∇~xL(~x,~λ) = 0

ci(~x) = 0 (i ∈ E)

ci(~x) ≥ 0 (i ∈ I)

λi ≥ 0 (i ∈ I)

λici(x) = 0 (17.15)

Karush-Kuhn-Tucker (KKT) conditions
necessary, not sufficient
second order condition: positive definite Lagrangian Hessian
sensitivity

DRAFT 17.3 Solvers 221

replace c(x) = 0 with c(x) = ε
minimizer ~x goes to ~xε

f (~xε)− f (~x) ≈ ∇f · (~xε − ~x)

= λ∇c · (~xε − ~x)

≈ λ (c(~xε)− c(~x))

= λε
df

dε
= λ (17.16)

shadow prices: change in utility per change in constraint
~x primal λ dual
multi-objective
Pareto
not possible to improve one constraint without making others worse
defines Pareto frontier
can combine in multi-objective function with relative weights

17.3 SOLVERS

17.3.1 Penalty

penalty
combine

F = f (~x) +
µ

2

∑
i

c2
i(~x) (17.17)

∂F
∂xj

=
∂f

∂xj
+ µ

∑
i

ci
∂ci
∂xj

(17.18)

L = f (~x)−
∑
i

λici(~x) (17.19)

∂L
∂xj

=
∂f

∂xj
−
∑
i

λi
∂ci
∂xj

(17.20)

effectively taking ci = −λi/µ
solving a different problem
driven to 0 as µ→∞
small µ may be unbounded
large µ may be ill-conditioned
nonsmooth penalty

F = f (~x) + µ
∑
i∈E
|ci(~x)| + µ

∑
i∈I

[ci(~x)]− (17.21)

222 Constrained Optimization DRAFT

can be exact for large µ [Nocedal & Wright, 2006]
non-differentiable
approximate (17.5)

17.3.2 Augmented Lagrangian

augmented Lagrangian

L = f (~x)−
∑
i

λici(~x) +
µ

2

∑
i

c2
i(~x) (17.22)

∂L
∂xj

=
∂f

∂xj
−
∑
i

λi
∂ci
∂xj

+ µ
∑
i

ci
∂ci
∂xj

(17.23)

λ∗i = λi − µci
ci = (λi − λ∗i)/µ
vanishes much faster, as Lagrange multiplier estimates converge
λ(n+1)
i = λ(n)

i − µci
minimize ~x, update λ, increase µ

17.3.3 Interior Point

interior point
basis largest, most efficient solvers
directly solve system of equations

min
~x
f (~x)

ci(~x) = 0 (i ∈ E)

ci(~x)− si = 0 (i ∈ I)

si ≥ 0 (17.24)

KKT conditions, perturb from boundary

∇f −
∑
i

λi∇ci(~x) = 0

ci(~x) = 0 (i ∈ E)

ci(~x)− si = 0 (i ∈ I)

λisi = µ (i ∈ I) (17.25)

iterate Newton step on system, decrease µ
same as barrier method

min
~x,~s

f (x)− µ
∑
i

log si (i ∈ I)

ci(~x) = 0 (i ∈ E)

DRAFT 17.4 Problems 223

ci(~x)− si = 0 (i ∈ I) (17.26)

KKT condition for si

µ
1
si
− λi = 0 (17.27)

λisi = µ (17.28)

17.4 SELECTED REFERENCES

[Nocedal & Wright, 2006] Nocedal, Jorge, & Wright, Stephen J. (2006). Numerical
Optimization. 2nd edn. New York: Springer.

Unusually clear coverage of a field full of unusually opaque books.

17.5 P R O B L E M S

(17.1) Given a point (x0, y0), analytically find the closest point on the line y = ax + b
by minimizing the distance d2 = (x0 − x)2 + (y0 − y)2 subject to the constraint
y − ax− b = 0.

(17.2) Consider a set of N nodes that has each measured a quantity xi. The goal is to
find the best estimate x̄ by minimizing

min
x̄

N∑
i=1

(x̄− xi)2 , (17.29)

however each node i can communicate only with nodes j in its neighborhood
j ∈ N (i). This can be handled by having each node obtain a local estimate x̄i,
and introducing a consistency constraint cij = x̄i − x̄j = 0 ∀ j ∈ N (i).

(a) What is the Lagrangian?
(b) Find an update rule for the estimates x̄i by evaluating where the gradient of

the Lagrangian vanishes.
(c) Find an update rule for the Lagrange multipliers by taking a Newton root-

finding step on their associated constraints.

(17.3) Sorting can be written in terms of a permutation matrix P as ~s = P · ~u, where
~u is a vector of unsorted numbers, ~s are the sorted numbers, and each row and
column of P has one 1 and the rest of the elements are 0. Defining the vector ~n to
be {1, 2, . . .}, sorting can be done by maximizing ~n ·~s. Solve this as a constrained
optimization for a vector of random numbers.

