17 Constrained Optimization

best frequently has constraints
nutrition
groceries g > 0
prices p
price ming G - p
minimum requirements 77}
nutrition value N
N-g>m
defines linear program, L.P
price may be a function of quantity, not linear
quadratic objective, quadratic program, QP
general case mathematical program
portfolios, routing airplanes, running a factory
program as plan, not computer program, but can be same
electrical networks [Dennis, 1958]
routing [Kelly, 1991, Papadimitriou & Steiglitz, 1998]
flow control [Low et al., 2002]
layering [Chiang et al., 2007]
sorting
variables Z, objective minimize f(Z), constraints ¢(¥)
max = -min
slack variables to convert inequality to equality

o) >0 (17.1)
replace with
o(¥)—s=0
5s>0 (17.2)

combinatorial z equals 1 or -1 can be relaxed as algebraic constraint (x> — 1)> =0
L1 norm

2 = |l (17.3)
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compressed sensing, sparsity
non-differentiable
[Schmidt et al., 2007]
(z)+ = max(z,0)
() = max(—=z,0)
2] = (2)- + (2)+ (17.4)
can be relaxed
|z = |2lq
1
= — [log (1+e %) +log (1 +e*")] (17.5)
o
d|z|, 1 1
= — 17.6
dx l+e o 1+eo® (17.6)
Alzle  20e™® (17.7)
dzr (1 + eow)? '
minimize for increasing o
171 LAGRANGE MULTIPLIERS
single equality constraint ¢(Z) = 0
step in direction d to minimize f while satisfying the constraint
0 = (T +0)
~ @)+ Ve b
=Vec b (17.8)
step also minimizes f
0> f(@+08) — f(@)
R @)+ V0= f(D)
=Vf-d (17.9)

if Ve(Z) and V f(Z) aligned not possible to find a direction, hence Z is a local minimizer

define Lagrangian

L = (%) — \e(@)

solve for

(17.10)



220 Constrained Optimization DRAFT

0=VL
=Vf—-AVe (17.11)
multiple constraints
linear combination
V@ =) AVe@ (17.12)
J@ =Y N (17.13)

solving gives (), substitute into constraints to find A
inequality constraint

0 < o(F + 0)
~ @)+ Ve (17.14)

if constraint not active (c > 0), can just do gradient descent §=—aVv f
for an active constraint V f - §<0and Ve 6§ >0

define half-planes

no intersection if point in same direction V f = AVc¢

same condition, but now A > 0

172 OPTIMALITY

first-order condition

equality constraints ¢;(¥),7 € £

inequality constraints ¢;(Z),7 € Z

inactive constraint \; = 0

complementarity: A\;c; = 0: Lagrange multiplier only non-zero when constraint is
active, otherwise reduces to gradient descent

VL(EN) =0
(@ =0 (@e€f)
(@ =>0 (el
A>0 (el
Aici(xz) =0 (17.15)
Karush-Kuhn-Tucker (KKT) conditions
necessary, not sufficient

second order condition: positive definite Lagrangian Hessian
sensitivity
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replace c(x) = 0 with ¢(z) = €
minimizer & goes to I,

f@) = f(@) = V- (T —T)

= \Ve¢- (Z. — ©)
~ A(dZe) — 7))
= e
4 =A (17.16)
de
shadow prices: change in utility per change in constraint
Z primal A\ dual
multi-objective
Pareto
not possible to improve one constraint without making others worse
defines Pareto frontier
can combine in multi-objective function with relative weights
173 SOLVERS
17.3.1 Penalty
penalty
combine
— — /”L 2/ —»
F=f@+5 Z A (T) (17.17)
oF _ Of dc;
= 4 i 17.18
8xj 8xj H P ¢ 8xj ( )
L= f(@)— Y Ned) (17.19)
oL _ of dc;
— = - Ai 17.20
Oxr; Ox; ; Ox; ( )
effectively taking ¢; = —\;/p
solving a different problem
driven to 0 as y — oo
small ¢4 may be unbounded
large 1+ may be ill-conditioned
nonsmooth penalty
F=f@+n) ] le@)| +p_le@]- (17.21)

i€l i€l
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can be exact for large i [Nocedal & Wright, 2006]
non-differentiable
approximate (17.5)

17.3.2 Augmented Lagrangian

augmented Lagrangian

— K 2
L=f@ - Z Aiei(@) + 5 Z ci(T) (17.22)
oL of de; Jc;
_ = — )\z + i 17.23
61’j a.%'j zz: 8;rj qul:cafbj ( )
Af = A= e
¢i = (N = A/
vanishes much faster, as Lagrange multiplier estimates converge
)\(n+1) - /\(n) — uc;
minimize &, update A, increase p
17.3.3 Interior Point
interior point
basis largest, most efficient solvers
directly solve system of equations
min /()
c(@=0 (ef
ci(@)—s;,=0 (G e
5; >0 (17.24)
KKT conditions, perturb from boundary
V=Y AVe@® =0
(@) =0 (€&
CZ(.’E) —8; = 0 (Z S I)
Aisi=p (1 €T) (17.25)

iterate Newton step on system, decrease u
same as barrier method

min f(z) — p» logs; (i €I)

aH=0 (8
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(@) —s,=0 (e (17.26)
KKT condition for s;
1
w— =X = (17.27)
Si
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Unusually clear coverage of a field full of unusually opaque books.

175 PROBLEMS

(17.1) Given a point (xg, yo), analytically find the closest point on the line y = ax + b
by minimizing the distance d* = (zy — x)* + (o — y)* subject to the constraint
y—ax—b=0.

(17.2) Consider a set of N nodes that has each measured a quantity x;. The goal is to
find the best estimate Z by minimizing

N
min Y (- z;)’ (17.29)
=1

however each node ¢ can communicate only with nodes j in its neighborhood

j € N(i). This can be handled by having each node obtain a local estimate Z;,

and introducing a consistency constraint ¢;; = &; — Z; = 0V j € N().

(@) What 1s the Lagrangian?

(b) Find an update rule for the estimates Z; by evaluating where the gradient of
the Lagrangian vanishes.

(¢) Find an update rule for the Lagrange multipliers by taking a Newton root-
finding step on their associated constraints.

(17.3) Sorting can be written in terms of a permutation matrix P as § = P - @, where
i is a vector of unsorted numbers, 5 are the sorted numbers, and each row and
column of P has one 1 and the rest of the elements are 0. Defining the vector 71 to
be {1,2, ...}, sorting can be done by maximizing 7 - §. Solve this as a constrained
optimization for a vector of random numbers.



