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Simple Self-Reproducing Universal Automata* 
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Division of Engineering Mechanics, Stanford University, Stanford, California 

yon Neumann and Thatcher have shown that one may construct 
self-reproducing universal arrays using as basic cells finite autom- 
ata with only 29 states. The simplicity of the components necessi- 
tates complex programming. 

We present a self-reproducing universal array with simple program- 
ming. This is made possible by using as basic unit a finite automaton 
which can execute an internal program of up to 20 instructions. 

I. CT-MACHINES AND TI-IEIR EMBEDDING IN A TESSELLATION 

1.1. CT-mach ines  (Tha tcher ,  1965) combine the funct ions of a 
W-machine  ( the  p rog rammed  version of a Tur ing  machine  in t roduced by  
Pos t  (1936), W a n g  (1957), and Lee (1960))  and of a const ruct ion 
machine  which is a pr in t -only  machine  wi th  a half-plane for its tape. The  
const ruct ing a rm operates on one square at  a time, where it can pr in t  one 
symbol  f rom the  a lphabe t  Vc ; the a rm  m a y  also be ins t ructed to move  
one square up, down, left or right. (See Fig. 1.) 

A CT-mach ine  is p rog rammed  wi th  a finite list of instruct ions f rom the 
following: 

C-ins t ruct ions  
(cons t ruc t ing) :  

T- ins t ruct ions  
( tape-- or 
Tur ing  !) : 

u, d, r, 1 
C@) 
+ 

e 

t + (n), 
t -  (~) 

move  a rm up, down, right, left  
build x in the scanned square 
move  tape left one square 
move  tape r ight  one square 
erase scanned square (pr in t  0) 
m a r k  scanned square (pr in t  1) 
I f  instruct ion k is t :t: (n) ,  and the  

scanned tape  square is marked,  
proceed to inst ruct ion /¢ :i: n;  if 

* This research was supported by the Air Force Office of Scientific Research 
under Contract AF 49(638)-1440. 
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HALF-PLANE CONSTRUCTION 
AREA, EACH SQUARE MAY BE 
IN ONE OF A FINITE NUMBER OF 
STATES DENOTED BY SYMBOLS 
FROM THE CONSTRUCTION 
ALPHABET V c 

\ 

t CONSTRUCTION ARM 

/ U - T 1  STORAGE Or PROGRAM 
/ / I CONTROL OF TAPE AND 

 O ST UCT,O  OP   T,ONS 

INDEFINITELY, EACH SQUARE 
MAY BEAR THE SYMBOLS 
0 OR I 

FIG. 1. A CT-machine 

not ,  go to inst ruct ion k + 1. I 
* stop 

Our  first task is to embed  CT-machines  in a plane tessellation in such a 
way  t h a t  they  can const ruct  new C T - a u t o m a t a  in the  half-plane above 
t h e m  and then  see if, amongs t  such au tomata ,  there is one t h a t  can pro- 
duce a copy  of itself. E a c h  cell in the  tessellation is an identical  finite 
au toma ton - - ce l l s  differ only  in their  internal  states. One state is desig- 
na ted  quiescent. 

Coordinat ing  the  tessellation wi th  integer coordinates (m, n) ,  we shall 
label directions as follows 

u ( = u p ) :  increasing n 
d ( = down)  : decreasing n 
l ( =  le f t ) :  decreas ing m 
r ( =  r i gh t ) :  increasing m 

1 We use this for ease of later programming instead of the transfer instruction 
used by Lee and Wang: t(n): if square is marked proceed to instruction n, etc. 
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Given a square (m, n), we say it has four neighbors, the cells with co- 
ordinates (m d- 1, n), (m - 1, n), (m, n + 1), and ( m ,  n - 1). 

yon Neumann (1951, 1965) and Thatcher (1965) have shown that one 
may construct self-reproducing universal arrays using as basic cells finite 
automata with only 29 states. The price we pay for the simplicity of the 
components is that the coding of the array is enormously complicated, 
and the operation of the array requires many many steps to simulate one 
cycle of an ordinary Turing machine. 

Our purpose here is to present a self-reproducing universal array with 
simple coding, and a time scale which is (except for transfer instructions) 
similar to that of an ordinary Turing machine. The price we pay for the 
simplicity of programming and operation is that our cells are more com- 
pl icated-the basic unit is a finite automaton which can execute an 
internal program ~ of up to 20 instructions. 

Our basic module could, of course, be decomposed into simpler com- 
ponents. However, adopting a hierarchical (or b i o l o g i c a l )  ~ view of systems 
organization, the present construction is satisfactory without undertak- 
ing a module decomposition--in fact, it is preferable. 

There is one other factor, besides the program-controlled behavior of 
the modules, which drastically simplifies our task. This is the use of a 
"welding" operation (suggested by yon Neumann in his 1948 Princeton 
lectures--see Burks (1960)--but abandoned in his tessellation model; it 
was used by Myhill (1963) in his outline of the design of a self-reproduc- 
ing C-machine, as distinct from CT-machine) whereby cells can be 
formed into aggregates which may be moved about the plane en masse. 
Thus, in distinction to the von Neumann-Thatcher model, the tape of a 
Turing machine will actually be modeled as a one-dimensional string of 
cells welded together so that they can be moved left or right on command. 

Consider the following excerpt from Burks (1960). "Someone ob- 
jected to von Neumann that the problem of self-reproduction can be 
trivialized by assuming an element sufficiently complicated, or by de- 
fining self-reproduction suitably. For example, in a cellular model, we 
could have two states, quiescent and excited, and stipulate that each 
excited state excites its neighbor, thereby reproducing itself." The 
point of our construction is not that very simple or very complex corn- 

We shall  hencefor th  refer to the  in terna l  programs as / -programs to avoid 
confusion wi th  the  p rogram of the  CT-machine .  

s The  re la t ionship of this  work to work on parallel  computa t ion  in tesselat ions,  
and  some comments  on biological systems,  will appear  in the  Proc. Conf. Com- 
puter Sci. Systems held at  the  Univers i ty  of Western  Ontario,  September,  1965. 
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OUT~ IN r 

IN d OUTcl 

FIG. 2. The basic module 

ponents can be used to build a self-reproducing automaton; but rather 
that,  given components of one level of complexity, we may use them to 
obtain self-reproducing aggregates of an arbitrarily higher level of com- 
plexity (e.g., a universal Turing maehine)--complexity being in the 
senseof Rabin (1960), Ritehie (1963), and Arbib and Blum (1965). 

1.2. Our basic cell has the structure shown in Fig. 2. There are input 
and output  channels, and weld positions, in each of the four directions, 
a bit register BR, and 20 registers to hold the/-program. 

The hatching denotes the combinatorial circuitry which combines the 
inputs and the setting of the registers and welds at time t to determine 
the move between t and t + 1; new register settings and output  of the 
module at time t + 1. 

The quiescent state is that  in which all 25 registers (including the 
four weld registers) are set to zero. 

1.3. Each weld may be on (state 1) or off (state 0) ; and two neighbor- 
ing cells are said to be welded if either of the welds on their common 
boundary is in state 1, 
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Let  W be the ancestral relation of welding on cells, i.e., 

W(a, b) *=* a and b are welded neighbors 

or 2t c such tha t  W(a, c) and W(c, b). 

A collection C of cells is called comoving if a C C ~ :  b 6 C *=~ W(a, b). 
We make the following convention: 4 I f  any cell in a comoving set C 

receives at  t ime t an instruction to move in direction x (u, d, l, or r),  
and no cell in the set receives at  t ime t an instruction to move in any 
direction other than  x, then a cell a of C will move one square in the 
direction x if its neighbor at  t ime t in direction x is either quiescent (all 
registers, including welds, in 0 state)  or belongs to C. I f  the cell is occupied 
at  t ime t by  a cell not in C, and it does not belong to a comoving set 
which has been instructed at t ime t to move in direction x, then our 
cell "disappears ,"  i.e., the state of the neighboring square in direction 
x remains unchanged. I f  two comoving sets both tend to move into a 
given square at  t ime t, then tha t  square is to be blank at  t ime t zc 1. 

The  behavior of a module between times t and t ,-l- 1 will be governed 
by  the state of its four neighbors at  t ime t, with the sole exception of the 
move operations described above. 

1.4. The over-all plan of the machine is very simple, as shown in 
Fig. 3. The CT-program consists of a linear string of eomoving cells, 
part i t ioned into substrings of > 1 adjacent cells the left-most of which 
has (BR} = 1, the remainder of which (if any) have (BR) = 0. The 
ruth such substring from the left represents the mth  instruction of the 
CT-program,  and contains one cell unless the ruth instruction is t 4- (n),  
in which ease it contains n ~ 1 cells. 

The tape head, comprising two cells, serves: to read T-instructions 
from the program; to execute them; to initiate construction operations 
above the program cell above it; and to move the CT-program. The 
tape consists of a linear string of eomoving cells, one for each square of 
the tape of the s imuland--wi th  (BR) of a cell being 1 or 0 as the cor- 
responding square of the simuland is marked or not. 

4 I have rather loosely talked of a cell moving in direction x when in fact it is 
the contents of the registers that are moved. This should cause no confusion. 
Thus, a cornering set really comprises a pattern, rather than actual cells of the 
tessellation. 
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CONSTRUCTING 
AREA 

CONST OCT,O  _ 

- ~ - ' ~  CONTROL HEAD 

COMPUTATION TAPE 

Fro. 3. Over-all plan of embedded CT-maohine 

TAPE AREA 
= ~.. 

II. /-PROGRAMMING THE MODULES 

Given the above framework, one can generate many schemes for i-pro- 
gramming the modules. The reader who is convinced of this may  skip 
the details of this section. 

2.1. The Order Code of the Modules. We shall write the various module 
instructions out in semiEuglish--in building an actual module one would 
code these instructions in some compact albeit unintelligible way. In  
what  follows A may take on the direction values u, l, d, r, or lr; b E {0, 1} 
denotes the contents of BR or a weld register; k, k' C {BR, 1, 2, • • • , 20} 
denote registers. An instruction of the form "<A}x" tells the module to 
emit on its output  in direction A the order x. 

"weld Ab" tells the module to change the state of its A 
weld (or welds) to b 

"emit  Ak" tells the module to emit in direction A ,the con- 
tents of its k register 

"move A"  tells the module to move (subject to the limita- 
tions of Section 1.3) in direction A 

"A = 0 :YES ( k ) ,  If the input from direction A equals 0, execute 
NO(k ' )"  instruction k next; if not, execute instruction 

k' next. 
"go to k"  tells the module to next execute instruction k 

(it may be regarded as an abbreviation for 
"A = 0: YES(k) ,  N O ( k ) " )  

"<A}k; k' " executed by  a module a causes the contents of 
a's register k to be stored in the register k' 



S I M P L E  S E L F - R E P R O D U C T I O N  183 

"A  place b" 
"stop" 

of the A neighbor of a 
tells the module in direction A to place b in its B R  
This is overridden by an input instruction but  

will be executed when control of inputs lapses, 
unless inputs transfer control to some other 
instruction of the internal program. 

This completes our list. Several of these instructions could be avoided 
by reprogramming. Other instructions could be added to make our cell 
aggregates more useful and economical for executing tasks other than 
that  which occupies us here. 

To complete our specification we should say what happens if a module 
receives contradictory instructions from its neighbors. However, we 
leave this open since we shall not need to invoke such a convention in the 
programming that  follows. 

2.2. Instructions m, e, -t-, --. These instructions are coded by a four 
instruction i-program in the first four registers in the CT-program 
square 6 ~ (which, of course, has B R  set to 1) : 

(P: 1. (d} 4, 5 
2. (d) go to 4 
3. stop 

The contents of register 4 depend on the instruction: 

m: (d} place 1 
e: (d} place 0 
+ :  (d) move l 
- -  :(d) move r 

(P will be above the first square of the control head C1 which will act 
by activating the 6 ~, which loads the appropriate/-instruction in register 
5 of ~1, which then proceeds to make sure that  the tape square below it 
is welded into the tape, execute the tape instruction, and then advance 
the program tape, and activate the new CT-program square (P, thus 
completing the cycle: 

al  : 1. (u} move l 4. (d) weld lr 1 
2. (u) go to 1 5. (to be loaded by (P) 
3. stop 6. go to 1 
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2.3. Instructions t ~ (n).  Most of the logic is contained in the second 
square e2 of the control head. A small routine in 6)1 loads instruction 
15 of C2, telling whether the transfer is left or right: 

(P: 1. (d} l 
2. (d) 5, 15 
3. ( d } g o t o l  
4. stop 

The contents of register 5 depend on the instruction: 

tq- : (u} move l 
t - :  (u> m o v e  r 

Now, for a transfer instruction t ~: (n),  (91 is followed by  k = n T 1  
squares with their B R  set to 0. The first job of e2 is to test whether the 
scanned tape square is 1-- if  not, it simply advances the CT-program 
to the next instruction, and returns control to el  : 

C~ : 1. (d} emit u B R  5. u = 0: YES(3) ,  NO(6)  
2. d = 0: YES(3) ,  NO(9)  6. move r 
3. (u} move l 7. {/} go to 2 
4. (u} emit d B R  8. stop 

If  the tape square is marked, C~ has now to generate on its right a 
string of k squares with Wr (the right Weld register) set to one, so 
that  it may  remember k while moving the CT-program tape: 

¢2 : 9. (u} move 1 12. (r} move 1 
10. (u} emit d B R  13. (r} weld r 1 
11. u = 0: YES(12) ,  N0(15 )  14. go to 9 

Having done this, ¢2 has advanced the CT-program tape by one in- 
struction string. So for t -4- (n) it must move the CT-program tape a 
further  k = n -- 1 instruction strings left; for t -- (n) it must  move the 
CT-program tape k = n -4- 1 instruction strings right: 

e= : 15. (r} emit 1 Wr 18. (to be loaded by (~1 : 
(u} move 1/r) 

16. r = 0: YES(6) ,  NO(17) 19. (u} emit d B R  
17. (r} move 1 20. u = 0: YES(18) ,  NO(15) 

We are at  a loss to use the "simpler" switching methods of digital com- 
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puters, since we have no a priori bound on the number of instructions, 
and thus (because of transfers) on the length of these instructions. 

Note that  it is the number 20 of instructions in the program of e2 
that. determined our choice of 20 as the number of instruction registers 
in each module. If we had allowed more instructions, we could have 
used a one module control head. Using more squares in the control head, 
and some ingenious reprogramming, we can reduce the number of 
registers per module. 

2.4. Construction Instructions. We do not have a constructing arm 
as in the CT-machine of Section 1.1. Rather  we construct (or print)  
only in the square up two from e l ,  and then move constructed cells 
about in the construction area by appropriate i-programming. 

"Construct ion" then occurs in the square above the program square 
above e l .  If  we want to load b in BR, all 20 instructions, set all four 
welds of the construction square, and then move the constructed cell 
one square in some direction, we may do it with three CT-program cells 
(Pl, (P2, (P3, in tha t  order. 

¢1:  1. {u) l l ,  1 (P, : 1. (u) l l ,  9 (Pa: 1. {u} 13, 17 
: : : : : : 

8. (u} 18, 8 8. (u} 18, 16 4. (u} 16, 2 0  
9. (d) go to 1 9. (d} go to 1 5. (u} place b 

10. stop 10. stop 6.1 up to four 
.. : ~instructions 

l•.jto be loaded 18.jto be loaded 9.j(u}weldAb 
10. (u} move A 
11. (d} go to 1 
12. stop 

.13"linstruetions 

:16.jto be loaded 

III. THE BASIC CONSTRUCTION RESULTS 

All the hard work was done in Section 2. We can now use our under- 
standing of effective procedures to deduce the results tha t  could form 
the basis for an axiomatic t reatment  of self-reproduction like that  given 
by  Myhill (1964). 

By an embedded CT-automaton we shall mean a control head together 
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with a finite program and finite tape, appropriately positioned, coded as a 
tessellation configuration in the manner  described above. 

We state, ra ther  imprecisely, 
THEOnE~ 1. Any CT-automaton may be effectively represented as an 

embedded CT-automaton. 
Proof: Section I I ,  Q.E.D. 
COnOLLAnr. Any Turing machine--thus any effective computation-- 

can be embedded in the tessellation. 
THnOnEM 2. There is an effective procedure whereby one can find for a 

given CT-automaton (~ an embedded CT-automaton c ( (~ ) (read "constructor 
of a " )  which when started (by telling its control head to "go to 1") will 
proceed to construct (~ in the three rows of its constructing area immediately 
above it, and activate (~ by telling its control head "go to 1." 

Proof: c(•) merely needs a control head and a CT-program but  no 
tape. I f  a has a program of length n, then at  most  the first 3n instruc- 
tions of the program of e ( a )  suffice to construct this program, in the 
first row of the constructing area, as a eomoving set. This is then moved 
left or right the appropriate  number  of squares, and then up one square. 

We then move the program of (~ up a further square by  secreting a 
cell with an up weld, move it up one carrying the program, then build 
a cell which destroys its weld. The program square of e ( a )  bears the 
i-program, for the lat ter  square, as shown below. 

1. (u) s, 1 6. (d) go to 1 
2. (u} 9, 2 7. stop 
3. (u) 10, 3 8. (u} weld u 0 
4. (u) go to I 9. (d} go to 6 
5. stop 10. stop 

The  control head of (~ is then built and moved up one, after which the 
tape of (~ is constructed as a comoving set and moved left or right to 
position it appropriately.  The final square of the program of c((~) 
(or, a t  least, of tha t  par t  used in the construction of a )  then serves to 
act ivate  the control head of 6~ :5 

1. (u} 5, 1 4. appropriate  transfer of control instruction: e.g., 
2. (u} 6, 2 (d} go to 1, or stop 
3. (u} go to 1 5. (u} go to 1 

6. stop 
Q.E.D. 

5 The two instructions loaded in the tape square of (~ are irrelevant to its per- 
formance as a tape square. 
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Thanks to these results we may argue about CT-machines whose 
construction alphabet is V~ = {the set of different register configurations 
of a module of our tessellation}, and then embed them. 

U C V~ represents a module with all (including weld) registers in 
state 0. 

Consider recursive function theory on lye, the set of finite eonfigura- 
tions of nonquiescent squares in the tessellation, i.e., the set of functions 
f : I  X I ---+ Vc such that  the cardinality of {(m, n) I f (m,  n) ~ U} 
is finite. 

Clearly this set is denumerable; we have an effective procedure for 
going from a CT-automaton (~ to an element fe of ~ ,  the embedding 
of a,  and we may find a birecursive function (Arbib, 1965) h: IYe --~ {0, 1} *, 
which effectively assigns a distinct tape configuration to each embedded 
CT-automaton. 

Now there is a recursive function for going from h(fe) to f~.  Thus, by 
Turing's thesis (Arbib, 1964, Sec. 1.6) in a CT-version, we may deduce, 
following Thatcher (1965, Sec. 8). 

THEOREM 3. For each birecursive function h: V~ --* {0, 1} *, there exists 
a CT-machine which not only can function as a universal Turing machine, 
but when started scanning the left-most end of h(f)  on its tape, will proceed 
to print the configuration f in its construction area. 

Now consider the machine C" which has a slightly longer program: 
namely before constructing f, it copies its tape into the right position. 
I t  then constructs f (the programming has to be slightly modified to 
stop the tape from obstructing this construction--this is left as an 
exercise for the reader) and positions the tape correctly. Considering 
C" with the description of C" on its tape, we conclude with 

THEOREM 4. There exists a self-reproducing universal array embeddable 
in our tessellation. 
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