
:NFORMATION AND CONTROL 9, 177--189 (1966)

Simple Self-Reproducing Universal Automata*

3L[ICHAEI~ A. ARBIB

Division of Engineering Mechanics, Stanford University, Stanford, California

yon Neumann and Thatcher have shown that one may construct
self-reproducing universal arrays using as basic cells finite autom-
ata with only 29 states. The simplicity of the components necessi-
tates complex programming.

We present a self-reproducing universal array with simple program-
ming. This is made possible by using as basic unit a finite automaton
which can execute an internal program of up to 20 instructions.

I. CT-MACHINES AND TI-IEIR EMBEDDING IN A TESSELLATION

1.1. CT-mach ines (Tha tcher , 1965) combine the funct ions of a
W-machine (the p rog rammed version of a Tur ing machine in t roduced by
Pos t (1936), W a n g (1957), and Lee (1960)) and of a const ruct ion
machine which is a pr in t -only machine wi th a half-plane for its tape. The
const ruct ing a rm operates on one square at a time, where it can pr in t one
symbol f rom the a lphabe t Vc ; the a rm m a y also be ins t ructed to move
one square up, down, left or right. (See Fig. 1.)

A CT-mach ine is p rog rammed wi th a finite list of instruct ions f rom the
following:

C-ins t ruct ions
(cons t ruc t ing) :

T- ins t ruct ions
(tape-- or
Tur ing !) :

u, d, r, 1
C@)
+

e

t + (n),
t - (~)

move a rm up, down, right, left
build x in the scanned square
move tape left one square
move tape r ight one square
erase scanned square (pr in t 0)
m a r k scanned square (pr in t 1)
I f instruct ion k is t :t: (n) , and the

scanned tape square is marked,
proceed to inst ruct ion /¢ :i: n; if

* This research was supported by the Air Force Office of Scientific Research
under Contract AF 49(638)-1440.

177

178 Aa~IB

HALF-PLANE CONSTRUCTION
AREA, EACH SQUARE MAY BE
IN ONE OF A FINITE NUMBER OF
STATES DENOTED BY SYMBOLS
FROM THE CONSTRUCTION
ALPHABET V c

\

t CONSTRUCTION ARM

/ U - T 1 STORAGE Or PROGRAM
/ / I CONTROL OF TAPE AND

 O ST UCT,O OP T,ONS

INDEFINITELY, EACH SQUARE
MAY BEAR THE SYMBOLS
0 OR I

FIG. 1. A CT-machine

not , go to inst ruct ion k + 1. I
* stop

Our first task is to embed CT-machines in a plane tessellation in such a
way t h a t they can const ruct new C T - a u t o m a t a in the half-plane above
t h e m and then see if, amongs t such au tomata , there is one t h a t can pro-
duce a copy of itself. E a c h cell in the tessellation is an identical finite
au toma ton - - ce l l s differ only in their internal states. One state is desig-
na ted quiescent.

Coordinat ing the tessellation wi th integer coordinates (m, n) , we shall
label directions as follows

u (= u p) : increasing n
d (= down) : decreasing n
l (= le f t) : decreas ing m
r (= r i gh t) : increasing m

1 We use this for ease of later programming instead of the transfer instruction
used by Lee and Wang: t(n): if square is marked proceed to instruction n, etc.

SIMPLE SELF-REPRODUCTION 179

Given a square (m, n), we say it has four neighbors, the cells with co-
ordinates (m d- 1, n), (m - 1, n), (m, n + 1), and (m , n - 1).

yon Neumann (1951, 1965) and Thatcher (1965) have shown that one
may construct self-reproducing universal arrays using as basic cells finite
automata with only 29 states. The price we pay for the simplicity of the
components is that the coding of the array is enormously complicated,
and the operation of the array requires many many steps to simulate one
cycle of an ordinary Turing machine.

Our purpose here is to present a self-reproducing universal array with
simple coding, and a time scale which is (except for transfer instructions)
similar to that of an ordinary Turing machine. The price we pay for the
simplicity of programming and operation is that our cells are more com-
pl icated-the basic unit is a finite automaton which can execute an
internal program ~ of up to 20 instructions.

Our basic module could, of course, be decomposed into simpler com-
ponents. However, adopting a hierarchical (or b i o l o g i c a l) ~ view of systems
organization, the present construction is satisfactory without undertak-
ing a module decomposition--in fact, it is preferable.

There is one other factor, besides the program-controlled behavior of
the modules, which drastically simplifies our task. This is the use of a
"welding" operation (suggested by yon Neumann in his 1948 Princeton
lectures--see Burks (1960)--but abandoned in his tessellation model; it
was used by Myhill (1963) in his outline of the design of a self-reproduc-
ing C-machine, as distinct from CT-machine) whereby cells can be
formed into aggregates which may be moved about the plane en masse.
Thus, in distinction to the von Neumann-Thatcher model, the tape of a
Turing machine will actually be modeled as a one-dimensional string of
cells welded together so that they can be moved left or right on command.

Consider the following excerpt from Burks (1960). "Someone ob-
jected to von Neumann that the problem of self-reproduction can be
trivialized by assuming an element sufficiently complicated, or by de-
fining self-reproduction suitably. For example, in a cellular model, we
could have two states, quiescent and excited, and stipulate that each
excited state excites its neighbor, thereby reproducing itself." The
point of our construction is not that very simple or very complex corn-

We shall hencefor th refer to the in terna l programs as / -programs to avoid
confusion wi th the p rogram of the CT-machine .

s The re la t ionship of this work to work on parallel computa t ion in tesselat ions,
and some comments on biological systems, will appear in the Proc. Conf. Com-
puter Sci. Systems held at the Univers i ty of Western Ontario, September, 1965.

180 A~IB

OUTu IN u

IN.~ OUT r

OUT~ IN r

IN d OUTcl

FIG. 2. The basic module

ponents can be used to build a self-reproducing automaton; but rather
that, given components of one level of complexity, we may use them to
obtain self-reproducing aggregates of an arbitrarily higher level of com-
plexity (e.g., a universal Turing maehine)--complexity being in the
senseof Rabin (1960), Ritehie (1963), and Arbib and Blum (1965).

1.2. Our basic cell has the structure shown in Fig. 2. There are input
and output channels, and weld positions, in each of the four directions,
a bit register BR, and 20 registers to hold the/-program.

The hatching denotes the combinatorial circuitry which combines the
inputs and the setting of the registers and welds at time t to determine
the move between t and t + 1; new register settings and output of the
module at time t + 1.

The quiescent state is that in which all 25 registers (including the
four weld registers) are set to zero.

1.3. Each weld may be on (state 1) or off (state 0) ; and two neighbor-
ing cells are said to be welded if either of the welds on their common
boundary is in state 1,

SIMPLE SELF-REPRODUCTION 181

Let W be the ancestral relation of welding on cells, i.e.,

W(a, b) *=* a and b are welded neighbors

or 2t c such tha t W(a, c) and W(c, b).

A collection C of cells is called comoving if a C C ~ : b 6 C *=~ W(a, b).
We make the following convention: 4 I f any cell in a comoving set C

receives at t ime t an instruction to move in direction x (u, d, l, or r),
and no cell in the set receives at t ime t an instruction to move in any
direction other than x, then a cell a of C will move one square in the
direction x if its neighbor at t ime t in direction x is either quiescent (all
registers, including welds, in 0 state) or belongs to C. I f the cell is occupied
at t ime t by a cell not in C, and it does not belong to a comoving set
which has been instructed at t ime t to move in direction x, then our
cell "disappears ," i.e., the state of the neighboring square in direction
x remains unchanged. I f two comoving sets both tend to move into a
given square at t ime t, then tha t square is to be blank at t ime t zc 1.

The behavior of a module between times t and t ,-l- 1 will be governed
by the state of its four neighbors at t ime t, with the sole exception of the
move operations described above.

1.4. The over-all plan of the machine is very simple, as shown in
Fig. 3. The CT-program consists of a linear string of eomoving cells,
part i t ioned into substrings of > 1 adjacent cells the left-most of which
has (BR} = 1, the remainder of which (if any) have (BR) = 0. The
ruth such substring from the left represents the mth instruction of the
CT-program, and contains one cell unless the ruth instruction is t 4- (n),
in which ease it contains n ~ 1 cells.

The tape head, comprising two cells, serves: to read T-instructions
from the program; to execute them; to initiate construction operations
above the program cell above it; and to move the CT-program. The
tape consists of a linear string of eomoving cells, one for each square of
the tape of the s imuland--wi th (BR) of a cell being 1 or 0 as the cor-
responding square of the simuland is marked or not.

4 I have rather loosely talked of a cell moving in direction x when in fact it is
the contents of the registers that are moved. This should cause no confusion.
Thus, a cornering set really comprises a pattern, rather than actual cells of the
tessellation.

182 AUBIB

CONSTRUCTING
AREA

CONST OCT,O _

- ~ - ' ~ CONTROL HEAD

COMPUTATION TAPE

Fro. 3. Over-all plan of embedded CT-maohine

TAPE AREA
= ~..

II. /-PROGRAMMING THE MODULES

Given the above framework, one can generate many schemes for i-pro-
gramming the modules. The reader who is convinced of this may skip
the details of this section.

2.1. The Order Code of the Modules. We shall write the various module
instructions out in semiEuglish--in building an actual module one would
code these instructions in some compact albeit unintelligible way. In
what follows A may take on the direction values u, l, d, r, or lr; b E {0, 1}
denotes the contents of BR or a weld register; k, k' C {BR, 1, 2, • • • , 20}
denote registers. An instruction of the form "<A}x" tells the module to
emit on its output in direction A the order x.

"weld Ab" tells the module to change the state of its A
weld (or welds) to b

"emit Ak" tells the module to emit in direction A ,the con-
tents of its k register

"move A" tells the module to move (subject to the limita-
tions of Section 1.3) in direction A

"A = 0 :YES (k) , If the input from direction A equals 0, execute
NO(k ')" instruction k next; if not, execute instruction

k' next.
"go to k" tells the module to next execute instruction k

(it may be regarded as an abbreviation for
"A = 0: YES(k) , N O (k) ")

"<A}k; k' " executed by a module a causes the contents of
a's register k to be stored in the register k'

S I M P L E S E L F - R E P R O D U C T I O N 183

"A place b"
"stop"

of the A neighbor of a
tells the module in direction A to place b in its B R
This is overridden by an input instruction but

will be executed when control of inputs lapses,
unless inputs transfer control to some other
instruction of the internal program.

This completes our list. Several of these instructions could be avoided
by reprogramming. Other instructions could be added to make our cell
aggregates more useful and economical for executing tasks other than
that which occupies us here.

To complete our specification we should say what happens if a module
receives contradictory instructions from its neighbors. However, we
leave this open since we shall not need to invoke such a convention in the
programming that follows.

2.2. Instructions m, e, -t-, --. These instructions are coded by a four
instruction i-program in the first four registers in the CT-program
square 6 ~ (which, of course, has B R set to 1) :

(P: 1. (d} 4, 5
2. (d) go to 4
3. stop

The contents of register 4 depend on the instruction:

m: (d} place 1
e: (d} place 0
+ : (d) move l
- - :(d) move r

(P will be above the first square of the control head C1 which will act
by activating the 6 ~, which loads the appropriate/-instruction in register
5 of ~1, which then proceeds to make sure that the tape square below it
is welded into the tape, execute the tape instruction, and then advance
the program tape, and activate the new CT-program square (P, thus
completing the cycle:

al : 1. (u} move l 4. (d) weld lr 1
2. (u) go to 1 5. (to be loaded by (P)
3. stop 6. go to 1

184 £RBIB

2.3. Instructions t ~ (n). Most of the logic is contained in the second
square e2 of the control head. A small routine in 6)1 loads instruction
15 of C2, telling whether the transfer is left or right:

(P: 1. (d} l
2. (d) 5, 15
3. (d } g o t o l
4. stop

The contents of register 5 depend on the instruction:

tq- : (u} move l
t - : (u> m o v e r

Now, for a transfer instruction t ~: (n), (91 is followed by k = n T 1
squares with their B R set to 0. The first job of e2 is to test whether the
scanned tape square is 1-- if not, it simply advances the CT-program
to the next instruction, and returns control to el :

C~ : 1. (d} emit u B R 5. u = 0: YES(3) , NO(6)
2. d = 0: YES(3) , NO(9) 6. move r
3. (u} move l 7. {/} go to 2
4. (u} emit d B R 8. stop

If the tape square is marked, C~ has now to generate on its right a
string of k squares with Wr (the right Weld register) set to one, so
that it may remember k while moving the CT-program tape:

¢2 : 9. (u} move 1 12. (r} move 1
10. (u} emit d B R 13. (r} weld r 1
11. u = 0: YES(12) , N0(15) 14. go to 9

Having done this, ¢2 has advanced the CT-program tape by one in-
struction string. So for t -4- (n) it must move the CT-program tape a
further k = n -- 1 instruction strings left; for t -- (n) it must move the
CT-program tape k = n -4- 1 instruction strings right:

e= : 15. (r} emit 1 Wr 18. (to be loaded by (~1 :
(u} move 1/r)

16. r = 0: YES(6) , NO(17) 19. (u} emit d B R
17. (r} move 1 20. u = 0: YES(18) , NO(15)

We are at a loss to use the "simpler" switching methods of digital com-

S I M P L E S E L F - R E P R O D U C T I O N 185

puters, since we have no a priori bound on the number of instructions,
and thus (because of transfers) on the length of these instructions.

Note that it is the number 20 of instructions in the program of e2
that. determined our choice of 20 as the number of instruction registers
in each module. If we had allowed more instructions, we could have
used a one module control head. Using more squares in the control head,
and some ingenious reprogramming, we can reduce the number of
registers per module.

2.4. Construction Instructions. We do not have a constructing arm
as in the CT-machine of Section 1.1. Rather we construct (or print)
only in the square up two from e l , and then move constructed cells
about in the construction area by appropriate i-programming.

"Construct ion" then occurs in the square above the program square
above e l . If we want to load b in BR, all 20 instructions, set all four
welds of the construction square, and then move the constructed cell
one square in some direction, we may do it with three CT-program cells
(Pl, (P2, (P3, in tha t order.

¢1: 1. {u) l l , 1 (P, : 1. (u) l l , 9 (Pa: 1. {u} 13, 17
: : : : : :

8. (u} 18, 8 8. (u} 18, 16 4. (u} 16, 2 0
9. (d) go to 1 9. (d} go to 1 5. (u} place b

10. stop 10. stop 6.1 up to four
.. : ~instructions

l•.jto be loaded 18.jto be loaded 9.j(u}weldAb
10. (u} move A
11. (d} go to 1
12. stop

.13"linstruetions

:16.jto be loaded

III. THE BASIC CONSTRUCTION RESULTS

All the hard work was done in Section 2. We can now use our under-
standing of effective procedures to deduce the results tha t could form
the basis for an axiomatic t reatment of self-reproduction like that given
by Myhill (1964).

By an embedded CT-automaton we shall mean a control head together

186 ARBIB

with a finite program and finite tape, appropriately positioned, coded as a
tessellation configuration in the manner described above.

We state, ra ther imprecisely,
THEOnE~ 1. Any CT-automaton may be effectively represented as an

embedded CT-automaton.
Proof: Section I I , Q.E.D.
COnOLLAnr. Any Turing machine--thus any effective computation--

can be embedded in the tessellation.
THnOnEM 2. There is an effective procedure whereby one can find for a

given CT-automaton (~ an embedded CT-automaton c ((~) (read "constructor
of a ") which when started (by telling its control head to "go to 1") will
proceed to construct (~ in the three rows of its constructing area immediately
above it, and activate (~ by telling its control head "go to 1."

Proof: c(•) merely needs a control head and a CT-program but no
tape. I f a has a program of length n, then at most the first 3n instruc-
tions of the program of e (a) suffice to construct this program, in the
first row of the constructing area, as a eomoving set. This is then moved
left or right the appropriate number of squares, and then up one square.

We then move the program of (~ up a further square by secreting a
cell with an up weld, move it up one carrying the program, then build
a cell which destroys its weld. The program square of e (a) bears the
i-program, for the lat ter square, as shown below.

1. (u) s, 1 6. (d) go to 1
2. (u} 9, 2 7. stop
3. (u) 10, 3 8. (u} weld u 0
4. (u) go to I 9. (d} go to 6
5. stop 10. stop

The control head of (~ is then built and moved up one, after which the
tape of (~ is constructed as a comoving set and moved left or right to
position it appropriately. The final square of the program of c((~)
(or, a t least, of tha t par t used in the construction of a) then serves to
act ivate the control head of 6~ :5

1. (u} 5, 1 4. appropriate transfer of control instruction: e.g.,
2. (u} 6, 2 (d} go to 1, or stop
3. (u} go to 1 5. (u} go to 1

6. stop
Q.E.D.

5 The two instructions loaded in the tape square of (~ are irrelevant to its per-
formance as a tape square.

SIMPLE SELF-REPRODUCTION 187

Thanks to these results we may argue about CT-machines whose
construction alphabet is V~ = {the set of different register configurations
of a module of our tessellation}, and then embed them.

U C V~ represents a module with all (including weld) registers in
state 0.

Consider recursive function theory on lye, the set of finite eonfigura-
tions of nonquiescent squares in the tessellation, i.e., the set of functions
f : I X I ---+ Vc such that the cardinality of {(m, n) I f (m, n) ~ U}
is finite.

Clearly this set is denumerable; we have an effective procedure for
going from a CT-automaton (~ to an element fe of ~ , the embedding
of a, and we may find a birecursive function (Arbib, 1965) h: IYe --~ {0, 1} *,
which effectively assigns a distinct tape configuration to each embedded
CT-automaton.

Now there is a recursive function for going from h(fe) to f~. Thus, by
Turing's thesis (Arbib, 1964, Sec. 1.6) in a CT-version, we may deduce,
following Thatcher (1965, Sec. 8).

THEOREM 3. For each birecursive function h: V~ --* {0, 1} *, there exists
a CT-machine which not only can function as a universal Turing machine,
but when started scanning the left-most end of h(f) on its tape, will proceed
to print the configuration f in its construction area.

Now consider the machine C" which has a slightly longer program:
namely before constructing f, it copies its tape into the right position.
I t then constructs f (the programming has to be slightly modified to
stop the tape from obstructing this construction--this is left as an
exercise for the reader) and positions the tape correctly. Considering
C" with the description of C" on its tape, we conclude with

THEOREM 4. There exists a self-reproducing universal array embeddable
in our tessellation.

ACKNOWleDGMEnT

The elegant exposition and reformulation by Thatcher (1965) of the yon Neu-
mann design (1951, 1965) provided the understanding which made it possible to
envision the present construction.

REFERENCES

ARBIB, M. A., (1964), "Brains, Machines, and Mathematics." McGraw-Hill,
New York.

ARBIB, M. A., (1965), Speed-up theorems and incompleteness theorems. In "Au-
tomata Theory," E. R. Cainiello, ed. Academic Press, New York.

AaBIB, M. A., ANn BLu~, M., (1965), Machine dependence of degrees of difficulty.
Proc. Am. Math. Soc. 16, 442-447.

188 ARBIB

BURKS, A. W., (1960), "Historical Analysis of yon Neumann's Theories of Arti-
ficial Self-Reproduction," dittoed notes, eight pages, Department of Phi-
losophy, University of Michigan, November 23, 1960.

BLTRKS, A. W., (1961), Computation, behavior and structure in fixed and growing
automata. Behavioral Sci. 6, 5--22. (Revised Version of the paper of the same
title in "Self-Organizing Systems," M. Yovits and S. Cameron, eds., pp.
282-311. Pergamon Press, New York, 1960.

HENNIE, F. C., (1961), "I terat ive Arrays of Logical Circuits." M.I.T. Press.
HOLLAND , J. H., (1960), I terative circuit computers. Proc. Western Joint Com-

puter Conf., pp. 259-265.
HOLLAND, J. H., (1962), Outline for a logical theory of adaptive systems. J. Assoc.

Comput. Mach. 9, 297-314.
HOLLAND, ,1. H., (1965), Iterative circuit computers: characterization and r6sum6

of advantages and disadvantages. Proc. Symp. Microelectronics and Large
Systems (Spartan Press, Washington, D. C., 1965).

LEE, C. Y., (1960), Automata and finite automata. Bell System Tech. J. 39, 1267-
1296.

L~E, C. Y., (1963), A Turing machine which prints its own code script. Proc. Symp.
Math. Theory Automata, pp. 155-164 (Polytechnic Press, Brooklyn, New
York).

MooR~, E. F., (1962), Machine models of self-reproduction. In "Mathematical
Problems in the Biological Sciences," Proc. Syrup. Appl. Math. 14, 17-33
(Amer. Math. Soc.).

MYH~LL, J., (1963), "Self-Reproducing Automata," course notes, Summer School
on Automata Theory, University of Michigan.

MrHILL, J., (1963), The converse of Moore's Garden of Eden theorem. Proc. Am.
Math. Soc. 14, 685-686.

Mr~IT.L, J., (1964), The abstract theory of self-reproduction. In "Views on Gen-
eral Systems Theory," M. D. Mesarovic, ed., pp. 106-118. Wiley, New York.

POST, E. L., (1936), Finite combinatory processes-formulation I. J. Symbolic Logic
1, 103-105.

RABIN, M. O., (1960), "Degree of Difficulty of Computing a Function, and a Par-
tial Ordering of Recursive Sets." Hebrew University, Jerusalem,.

RITCHIE, R. W., (1963), Classes of predictably computable functions. Trans.
Am. Math. Soe. 106, 139-173.

ShAnNON, C. E., (1958), von Neumann's contributions to automata theory. Bull.
Am. Math. Soc, 64, No. 3, 123-129.

THATCHER, J. W., (1963), The construction of a self-describing Turing machine.
Proc. Syrup. Math. Theory Automata, pp. 165-171 (Polytechnic Press, Brook-
lyn, New York).

THATCHER, J. W., (1965), Universality in the von Neumann cellular model. In
"Essays in Cellular Automata," A. W. Burks, ed., in preparation.

ULAM, S. M., (1960), "A Collection of Mathematical Problems." Interscience,
New York. See Sec. II . 2: A Problem on Matrices Arising in the Theory of
Automata.

VON NEVMANN, J., (1951), The general and logical theory of automata. In "Cere-

SIMPLE SELF-REPRODUCTION 189

bral Mechanisms in Behavior," Proc. Hixon Syrup., L. A. Jeffress, ed., pp.
1-31. Wiley, New York.

YON NEIZMANN, J., (1966), "The Theory of Automata: ConstrLtction, Reproduc-
tion, Homogeneity," A. W. Burks, ed. Univ. of Illinois Press, Urbana,
Illinois.

WAGNER, E. G., (1964), "An Approach to Modular Computers: I. Spider Au-
tomata and Embedded Automata," IBM RC 1107.

WANO, H., (1957), A variant to Turing's theory of computing machines. J. Sym-
bolic Logic 4, 63-92.

